Le Sauteur-Robitaille, JustinAbstractLe développement de nouveaux médicaments ou traitements contre le cancer requiert des années de travail préclinique avant de se rendre aux essais cliniques et ultimement le marché. Malheureusement, la grande majorité des composés ne réussiront pas cette transition et ne démontreront pas de bénéfices en essais cliniques. Dans le but de réduire l’attrition au long du processus de développement des médicaments, la modélisation mathématique est de plus en plus utilisée dans la recherche préclinique pour investiguer et optimiser les traitements pour améliorer les probabilités de succès de thérapies potentielles. Les modèles mécanistiques visent à incorporer les mécanismes d’action d’un médicament ainsi que les interactions physiologiques et cellulaires pour approfondir notre compréhension des systèmes et des effets thérapeutiques. La dissertation suivante traite de l’implémentation the modèles mécanistique hétérogènes dans des contextes précliniques pour la recherche contre le cancer.
Le second chapitre discute du cancer des cellules granulosa ovarienne and du développement d’un modèle mathématique pour investiguer le potentiel d’une thérapie combinatoire qui inclut une chimiothérapie et une immunothérapie produisant une protéine en lien avec le facteur de nécrose tumorale (TRAIL) à l’aide d’un virus oncolytique (VO). Le modèle considère les cellules tumorales à travers les stades de la mitose, l’infection de ces cellules par le VO et la pression du système immunitaire inné sur la population de cellules tumorales. Le modèle incorpore aussi des modèles pharmacocinétique/pharmacodynamie (PK/PD) pour TRAIL et le médicament chimio thérapeutique, composé activateur de procaspase-1 (PAC-1). Cela inclue un modèle PK mécanistique décrivant la liaison de TRAIL à son récepteur ainsi qu’un modèle pharmacocinétique à deux compartiments pour PAC-1 dans le but d’intégrer les deux concentrations dans une fonction d’effets combinés affectant la population de cellules cancéreuses. À travers les simulations, nous avons déterminé les doses minimales requises et le schéma posologique optimal pour PAC-1 pour minimiser la croissance tumorale. Nous avons aussi établi un scénario permettant d’éradiquer la tumeur à l’aide d’un VO possédant un taux d’infection plus grand qu’initialement testé.
4
Dans le chapitre 3, nous présentons différentes approches pour inclure la variabilité inter-individuelle dans des modèles mécanistiques et discutons de leur bénéfices et désavantages. Nous décrivons comment les modèles PK de population (PopPK) informent sur la moyenne des paramètres d’une cohorte, la variation provenant des covariables et comment cette variabilité dans les paramètres permet d’étudier différentes dynamiques à travers une population. Dans une cohorte, la variabilité peut être généré par des algorithmes en assurant que les patients virtuels générés possèdent des paramètres et des résultats réalistiques. Nous discutons aussi des cohortes in silico pouvant prédire un intervalle de résultats and de scénarios potentiels d’un traitement. Ces essais cliniques virtuels sont très utiles en pharmacologie quantitative de systèmes (QSP).
Enfin, nous présentons une application d’un modèle PopPK utilisant 300 patients virtuels dans un modèle QSP pour la différentiation des cellules souches mammaires affectées par des doses d’estrogène. Nous investiguons l’effet de cette thérapie hormonale sur la différentiation cellulaire pour son application potentiel pour traiter le cancer du sein triple négatif (TNBC) puisque la prolactine a été proposée dans des modèles expérimentaux pour forcer la différentiation cellulaire des cellules cancéreuses. Notre modèle et les résultats obtenus servent de preuve de concept pour continuer la recherche des méthode pharmacologiques pour induire la différentiation des cellules souches permettant de réduire la sévérité et la plasticité des cellules cancéreuses.