Wolf, Guy
- Associate Professor
-
Faculty of Arts and Science - Department of Mathematics and Statistics
André-Aisenstadt Office 6165
Courriels
Affiliations
- Membre Institut de valorisation des données
- Membre Institut des algorithmes d'apprentissage de Montréal
- Membre IVADO Institut de valorisation des données
- Membre MILA Institut des algorithmes d'apprentissage de Montréal
Courses
- MAT6495 A - Théorie spectrale des graphes
Research area
Student supervision Expand all Collapse all
Horseshoe regularization for wavelet-based lensing inversion
Theses and supervised dissertations / 2024-03
Nafisi, Hasti
Abstract
Abstract
Les lentilles gravitationnelles se produisent lorsque le champ gravitationnel d'un objet massif dévie la trajectoire de la lumière provenant d'un objet lointain, entraînant une distorsion ou une amplification de l'image de l'objet lointain.
La transformation Starlet fournit une méthode robuste pour obtenir une représentation éparse des images de galaxies, capturant efficacement leurs caractéristiques essentielles avec un minimum de données. Cette représentation réduit les besoins de stockage et de calcul, et facilite des tâches telles que le débruitage, la compression et l'extraction de caractéristiques.
La distribution a priori de fer à cheval est une technique bayésienne efficace pour promouvoir la sparsité et la régularisation dans la modélisation statistique. Elle réduit de manière agressive les valeurs négligeables tout en préservant les caractéristiques importantes, ce qui la rend particulièrement utile dans les situations où la reconstruction d'une image originale à partir d'observations bruitées est difficile.
Étant donné la nature mal posée de la reconstruction des images de galaxies à partir de données bruitées, l'utilisation de la distribution a priori devient cruciale pour résoudre les ambiguïtés. Les techniques utilisant une distribution a priori favorisant la sparsité ont été efficaces pour relever des défis similaires dans divers domaines.
L'objectif principal de cette thèse est d'appliquer des techniques de régularisation favorisant la sparsité, en particulier la distribution a priori de fer à cheval, pour reconstruire les galaxies d'arrière-plan à partir d'images de lentilles gravitationnelles.
Notre méthodologie proposée consiste à appliquer la distribution a priori de fer à cheval aux coefficients d'ondelettes des images de galaxies lentillées. En exploitant la sparsité de la représentation en ondelettes et le comportement de suppression du bruit de la distribution a priori de fer à cheval, nous obtenons des reconstructions bien régularisées qui réduisent le bruit et les artefacts tout en préservant les détails structurels. Des expériences menées sur des images simulées de galaxies lentillées montrent une erreur quadratique moyenne inférieure et une similarité structurelle plus élevée avec la distribution a priori de fer à cheval par rapport à d'autres méthodes, validant son efficacité.