Rahman, Qazi Ibadur
- Honorary professor
-
Faculty of Arts and Science - Department of Mathematics and Statistics
André-Aisenstadt
Courriels
Research area
Student supervision Expand all Collapse all
Certain problems concerning polynomials and transcendental entire functions of exponential type
Theses and supervised dissertations / 2014-06
Hachani, Mohamed Amine
Abstract
Abstract
Let P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ a polynomial of degree n and M:=\sup_{|z|=1}|P(z)|$. Without any additional restriction, we know that $|P '(z) | \leq Mn$ for $| z | \leq 1$ (Bernstein's inequality). Now if we assume that the zeros of the polynomial $P$ are outside the circle $| z | = k$, which improvement could be made to the Bernstein inequality? It is already known [{\bf \ref{Mal1}}] that in the case where $k \geq 1$, one has$$ (*) \qquad | P '(z) | \leq \frac{n}{1 + k} M \qquad (| z | \leq 1),$$ what would it be in the case where $k < 1$? What is the analogous inequality for an entire function of exponential type $\tau$? On the other hand, if we assume that $P$ has all its zeros in $| z | \geq k \, \, (k \geq 1),$ which is the estimate of $| P '(z) |$ on the unit circle, in terms of the first four terms of its Maclaurin series expansion. This thesis comprises a contribution to the analytic theory of polynomials in the light of these problems.
Solution de C. Hyltén-Cavallius pour un problème de P. Turán concernant des polynômes
Theses and supervised dissertations / 2008
Tinawi, Félix
Abstract
Abstract
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Sur les comportements locaux de polynômes et polynômes trigonométriques
Theses and supervised dissertations / 2008
Hachani, Mohamed Amine
Abstract
Abstract
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Sur des inégalités dans Lp pour les polynômes et les polynômes trigonométriques
Theses and supervised dissertations / 2007
Ayoub, Nabil
Abstract
Abstract
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.