Fribergh, Alexander
- Associate Professor
-
Faculty of Arts and Science - Department of Mathematics and Statistics
André-Aisenstadt Office 4151
Courriels
Affiliations
- Membre Centre de recherches mathématiques
- Membre CRM Centre de recherches mathématiques
Research area
Student supervision Expand all Collapse all
Abstract
Abstract
Abstract
Abstract
Research projects Expand all Collapse all
Centre de recherches mathématiques (CRM) FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2022 - 2029
Random walks on random graphs in high dimensions CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2020 - 2026
Les probabilités a l'interface du physique statistique, l'informatique théorique et l'optimisation FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2018 - 2021
CENTRE DE RECHERCHES MATHEMATIQUES (CRM) FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2015 - 2023
RANDOM WALKS IN RANDOM ENVIRONMENTS AND TRAPS CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2015 - 2022
Étude des marches aléatoires biaisées sur des clusters de percolations FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2015 - 2019
Selected publications Expand all Collapse all
Scaling limit for the ant in a high-dimensional labyrinth
Scaling limits for sub-ballistic biased random walks in random conductances
Scaling limit for the ant in a simple labyrinth
Biased random walk on the interlacement set
Local trapping for elliptic random walks in random environments in Zd
Scaling limits for random walks on random critical trees
Biased random walks on random graphs
Lyons-Pemantle-Peres monotonicity problem for high biases
Phase transition for the speed of the biased random walk on the supercritical percolation cluster
Biased random walk in positive random conductances on $\Bbb Z^d$
Biased random walk on critical Galton-Watson trees conditioned to survive
Biased random walks on Galton-Watson trees with leaves
The speed of a biased random walk on a percolation cluster at high density
On slowdown and speedup of transient random walks in random environment