Passer au contenu

/ Department of Mathematics and Statistics

Rechercher

 

Duchesne, Pierre

Vcard

Professeur titulaire

Faculté des arts et des sciences - Département de mathématiques et de statistique

André-Aisenstadt local 4251

514 343-7267

Courriels

Cours donnés

  • STT6615 A - Séries chronologiques univariées

Expertises

Mes intérêts de recherche sont en statistique appliquée, plus particulièrement en théorie de l'échantillonnage, en analyse des séries chronologiques et en analyse multivariée. Je suis intéressé par les applications de ces champs d'étude dans d'autres domaines comme l'économétrie et la nouvelle discipline qu'est l'économétrie financière.

Encadrement Tout déplier Tout replier

Les tests de causalité en variance entre deux séries chronologiques multivariées Thèses et mémoires dirigés / 2010-12
Nkwimi-Tchahou, Herbert
Abstract
Les modèles de séries chronologiques avec variances conditionnellement hétéroscédastiques sont devenus quasi incontournables afin de modéliser les séries chronologiques dans le contexte des données financières. Dans beaucoup d'applications, vérifier l'existence d'une relation entre deux séries chronologiques représente un enjeu important. Dans ce mémoire, nous généralisons dans plusieurs directions et dans un cadre multivarié, la procédure dévéloppée par Cheung et Ng (1996) conçue pour examiner la causalité en variance dans le cas de deux séries univariées. Reposant sur le travail de El Himdi et Roy (1997) et Duchesne (2004), nous proposons un test basé sur les matrices de corrélation croisée des résidus standardisés carrés et des produits croisés de ces résidus. Sous l'hypothèse nulle de l'absence de causalité en variance, nous établissons que les statistiques de test convergent en distribution vers des variables aléatoires khi-carrées. Dans une deuxième approche, nous définissons comme dans Ling et Li (1997) une transformation des résidus pour chaque série résiduelle vectorielle. Les statistiques de test sont construites à partir des corrélations croisées de ces résidus transformés. Dans les deux approches, des statistiques de test pour les délais individuels sont proposées ainsi que des tests de type portemanteau. Cette méthodologie est également utilisée pour déterminer la direction de la causalité en variance. Les résultats de simulation montrent que les tests proposés offrent des propriétés empiriques satisfaisantes. Une application avec des données réelles est également présentée afin d'illustrer les méthodes

Contributions dans l'analyse des modèles vectoriels de séries chronologiques saisonnières et périodiques Thèses et mémoires dirigés / 2009
Ursu, Eugen
Abstract
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.

Sur la validation des modèles de séries chronologiques spatio-temporelles multivariées Thèses et mémoires dirigés / 2011-06
Saint-Frard, Robinson
Abstract
Dans ce mémoire, nous avons utilisé le logiciel R pour la programmation.

Les modèles vectoriels et multiplicatifs avec erreurs non-négatives de séries chronologiques Thèses et mémoires dirigés / 2014-05
Moutran, Emilie
Abstract
L'objectif du présent mémoire vise à présenter des modèles de séries chronologiques multivariés impliquant des vecteurs aléatoires dont chaque composante est non-négative. Nous considérons les modèles vMEM (modèles vectoriels et multiplicatifs avec erreurs non-négatives) présentés par Cipollini, Engle et Gallo (2006) et Cipollini et Gallo (2010). Ces modèles représentent une généralisation au cas multivarié des modèles MEM introduits par Engle (2002). Ces modèles trouvent notamment des applications avec les séries chronologiques financières. Les modèles vMEM permettent de modéliser des séries chronologiques impliquant des volumes d'actif, des durées, des variances conditionnelles, pour ne citer que ces applications. Il est également possible de faire une modélisation conjointe et d'étudier les dynamiques présentes entre les séries chronologiques formant le système étudié. Afin de modéliser des séries chronologiques multivariées à composantes non-négatives, plusieurs spécifications du terme d'erreur vectoriel ont été proposées dans la littérature. Une première approche consiste à considérer l'utilisation de vecteurs aléatoires dont la distribution du terme d'erreur est telle que chaque composante est non-négative. Cependant, trouver une distribution multivariée suffisamment souple définie sur le support positif est plutôt difficile, au moins avec les applications citées précédemment. Comme indiqué par Cipollini, Engle et Gallo (2006), un candidat possible est une distribution gamma multivariée, qui impose cependant des restrictions sévères sur les corrélations contemporaines entre les variables. Compte tenu que les possibilités sont limitées, une approche possible est d'utiliser la théorie des copules. Ainsi, selon cette approche, des distributions marginales (ou marges) peuvent être spécifiées, dont les distributions en cause ont des supports non-négatifs, et une fonction de copule permet de tenir compte de la dépendance entre les composantes. Une technique d'estimation possible est la méthode du maximum de vraisemblance. Une approche alternative est la méthode des moments généralisés (GMM). Cette dernière méthode présente l'avantage d'être semi-paramétrique dans le sens que contrairement à l'approche imposant une loi multivariée, il n'est pas nécessaire de spécifier une distribution multivariée pour le terme d'erreur. De manière générale, l'estimation des modèles vMEM est compliquée. Les algorithmes existants doivent tenir compte du grand nombre de paramètres et de la nature élaborée de la fonction de vraisemblance. Dans le cas de l'estimation par la méthode GMM, le système à résoudre nécessite également l'utilisation de solveurs pour systèmes non-linéaires. Dans ce mémoire, beaucoup d'énergies ont été consacrées à l'élaboration de code informatique (dans le langage R) pour estimer les différents paramètres du modèle. Dans le premier chapitre, nous définissons les processus stationnaires, les processus autorégressifs, les processus autorégressifs conditionnellement hétéroscédastiques (ARCH) et les processus ARCH généralisés (GARCH). Nous présentons aussi les modèles de durées ACD et les modèles MEM. Dans le deuxième chapitre, nous présentons la théorie des copules nécessaire pour notre travail, dans le cadre des modèles vectoriels et multiplicatifs avec erreurs non-négatives vMEM. Nous discutons également des méthodes possibles d'estimation. Dans le troisième chapitre, nous discutons les résultats des simulations pour plusieurs méthodes d'estimation. Dans le dernier chapitre, des applications sur des séries financières sont présentées. Le code R est fourni dans une annexe. Une conclusion complète ce mémoire.

Inférence robuste à la présence des valeurs aberrantes dans les enquêtes Thèses et mémoires dirigés / 2015-12
Dongmo Jiongo, Valéry
Abstract
Cette thèse comporte trois articles dont un est publié et deux en préparation. Le sujet central de la thèse porte sur le traitement des valeurs aberrantes représentatives dans deux aspects importants des enquêtes que sont : l?estimation des petits domaines et l?imputation en présence de non-réponse partielle. En ce qui concerne les petits domaines, les estimateurs robustes dans le cadre des modèles au niveau des unités ont été étudiés. Sinha & Rao (2009) proposent une version robuste du meilleur prédicteur linéaire sans biais empirique pour la moyenne des petits domaines. Leur estimateur robuste est de type «plugin», et à la lumière des travaux de Chambers (1986), cet estimateur peut être biaisé dans certaines situations. Chambers et al. (2014) proposent un estimateur corrigé du biais. En outre, un estimateur de l?erreur quadratique moyenne a été associé à ces estimateurs ponctuels. Sinha & Rao (2009) proposent une procédure bootstrap paramétrique pour estimer l?erreur quadratique moyenne. Des méthodes analytiques sont proposées dans Chambers et al. (2014). Cependant, leur validité théorique n?a pas été établie et leurs performances empiriques ne sont pas pleinement satisfaisantes. Ici, nous examinons deux nouvelles approches pour obtenir une version robuste du meilleur prédicteur linéaire sans biais empirique : la première est fondée sur les travaux de Chambers (1986), et la deuxième est basée sur le concept de biais conditionnel comme mesure de l?influence d?une unité de la population. Ces deux classes d?estimateurs robustes des petits domaines incluent également un terme de correction pour le biais. Cependant, ils utilisent tous les deux l?information disponible dans tous les domaines contrairement à celui de Chambers et al. (2014) qui utilise uniquement l?information disponible dans le domaine d?intérêt. Dans certaines situations, un biais non négligeable est possible pour l?estimateur de Sinha & Rao (2009), alors que les estimateurs proposés exhibent un faible biais pour un choix approprié de la fonction d?influence et de la constante de robustesse. Les simulations Monte Carlo sont effectuées, et les comparaisons sont faites entre les estimateurs proposés et ceux de Sinha & Rao (2009) et de Chambers et al. (2014). Les résultats montrent que les estimateurs de Sinha & Rao (2009) et de Chambers et al. (2014) peuvent avoir un biais important, alors que les estimateurs proposés ont une meilleure performance en termes de biais et d?erreur quadratique moyenne. En outre, nous proposons une nouvelle procédure bootstrap pour l?estimation de l?erreur quadratique moyenne des estimateurs robustes des petits domaines. Contrairement aux procédures existantes, nous montrons formellement la validité asymptotique de la méthode bootstrap proposée. Par ailleurs, la méthode proposée est semi-paramétrique, c?est-à-dire, elle n?est pas assujettie à une hypothèse sur les distributions des erreurs ou des effets aléatoires. Ainsi, elle est particulièrement attrayante et plus largement applicable. Nous examinons les performances de notre procédure bootstrap avec les simulations Monte Carlo. Les résultats montrent que notre procédure performe bien et surtout performe mieux que tous les compétiteurs étudiés. Une application de la méthode proposée est illustrée en analysant les données réelles contenant des valeurs aberrantes de Battese, Harter & Fuller (1988). S?agissant de l?imputation en présence de non-réponse partielle, certaines formes d?imputation simple ont été étudiées. L?imputation par la régression déterministe entre les classes, qui inclut l?imputation par le ratio et l?imputation par la moyenne sont souvent utilisées dans les enquêtes. Ces méthodes d?imputation peuvent conduire à des estimateurs imputés biaisés si le modèle d?imputation ou le modèle de non-réponse n?est pas correctement spécifié. Des estimateurs doublement robustes ont été développés dans les années récentes. Ces estimateurs sont sans biais si l?un au moins des modèles d?imputation ou de non-réponse est bien spécifié. Cependant, en présence des valeurs aberrantes, les estimateurs imputés doublement robustes peuvent être très instables. En utilisant le concept de biais conditionnel, nous proposons une version robuste aux valeurs aberrantes de l?estimateur doublement robuste. Les résultats des études par simulations montrent que l?estimateur proposé performe bien pour un choix approprié de la constante de robustesse.

Sur les tests lisses d'ajustement dans le context des series chronologiques Thèses et mémoires dirigés / 2015-12
Tagne Tatsinkou, Joseph Francois
Abstract
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l?inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d?ajustement vise à s?assurer de la conformité ou de la cohérence de l?hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d?ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l?estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l?inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d?algèbre linéaire. Le résultat s?applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d?alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L?outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d?ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d?absence de paramétrisation. Le test que nous proposons s?applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d?Hermite. Dans le cas particulier des polynômes d?Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu?il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l?univarié au multivarié ; le choix d?une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d?évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu?aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).

Diagnostics robustes à des délais individuels en utilisant les estimateurs robustes RA-ARX Thèses et mémoires dirigés / 2004
Bou-Hamad, Imad
Abstract
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Sur les tests de type diagnostic dans la validation des hypothèses de bruit blanc et de non corrélation Thèses et mémoires dirigés / 2016-09
Sango, Joel
Abstract
Dans la modélisation statistique, nous sommes le plus souvent amené à supposer que le phénomène étudié est généré par une structure pouvant s?ajuster aux données observées. Cette structure fait apparaître une partie principale qui représente le mieux possible le phénomène étudié et qui devrait expliquer les données et une partie supposée négligeable appelée erreur ou innovation. Cette structure complexe est communément appelée un modèle, dont la forme peut être plus ou moins complexe. Afin de simplifier la structure, il est souvent supposé qu?elle repose sur un nombre fini de valeurs, appelées paramètres. Basé sur les données, ces paramètres sont estimés avec ce que l?on appelle des estimateurs. La qualité du modèle pour les données à notre disposition est également fonction des estimateurs et de leurs propriétés, par exemple, est-ce que les estimateurs sont raisonnablement proches des valeurs idéales, c?est-à-dire les vraies valeurs. Des questions d?importance portent sur la qualité de l?ajustement d?un modèle aux données, ce qui se fait par l?étude des propriétés probabilistes et statistiques du terme d?erreur. Aussi, l?étude des relations ou l?absence de ces dernières entre les phénomènes sous des hypothèses complexes sont aussi d?intérêt. Des approches possibles pour cerner ce genre de questions consistent dans l?utilisation des tests portemanteaux, dits également tests de diagnostic. La thèse est présentée sous forme de trois projets. Le premier projet est rédigé en langue anglaise. Il s?agit en fait d?un article actuellement soumis dans une revue avec comité de lecture. Dans ce projet, nous étudions le modèle vectoriel à erreurs multiplicatives (vMEM) pour lequel nous utilisons les propriétés des estimateurs des paramètres du modèle selon la méthode des moments généralisés (GMM) afin d?établir la distribution asymptotique des autocovariances résiduelles. Ceci nous permet de proposer des nouveaux tests diagnostiques pour ce type de modèle. Sous l?hypothèse nulle d?adéquation du modèle, nous montrons que la statistique usuelle de Hosking-Ljung-Box converge vers une somme pondérée de lois de khi-carré indépendantes à un degré de liberté. Un test généralisé de Hosking-Ljung-Box est aussi obtenu en comparant la densité spectrale des résidus de l?estimation et celle présumée sous l?hypothèse nulle. Un avantage des tests spectraux est qu?ils nécessitent des estimateurs qui convergent à la vitesse n?1/2 où n est la taille de l?échantillon, et leur utilisation n?est pas restreinte à une technique particulière, comme par exemple la méthode des moments généralisés. Dans le deuxième projet, nous établissons la distribution asymptotique sous l?hypothèse de faible dépendance des covariances croisées de deux processus stationnaires en covariance. La faible dépendance ici est définie en terme de l?effet limité d?une observation donnée sur les observations futures. Nous utilisons la notion de stabilité et le concept de contraction géométrique des moments. Ces conditions sont plus générales que celles de l?invariance des moments conditionnels d?ordre un à quatre utilisée jusque là par plusieurs auteurs. Un test statistique basé sur les covariances croisées et la matrice des variances et covariances de leur distribution asymptotique est alors proposé et sa distribution asymptotique établie. Dans l?implémentation du test, la matrice des variances et covariances des covariances croisées est estimée à l?aide d?une procédure autorégressive vectorielle robuste à l?autocorrélation et à l?hétéroscédasticité. Des simulations sont ensuite effectuées pour étudier les propriétés du test proposé. Dans le troisième projet, nous considérons un modèle périodique multivarié et cointégré. La présence de cointégration entraîne l?existence de combinaisons linéaires périodiquement stationnaires des composantes du processus étudié. Le nombre de ces combinaisons linéaires linéairement indépendantes est appelé rang de cointégration. Une méthode d?estimation en deux étapes est considérée. La première méthode est appelée estimation de plein rang. Dans cette approche, le rang de cointégration est ignoré. La seconde méthode est appelée estimation de rang réduit. Elle tient compte du rang de cointégration. Cette dernière est une approche non linéaire basée sur des itérations dont la valeur initiale est l?estimateur de plein rang. Les propriétés asymptotiques de ces estimateurs sont aussi établies. Afin de vérifier l?adéquation du modèle, des statistiques de test de type portemanteau sont considérées et leurs distributions asymptotiques sont étudiées. Des simulations sont par la suite présentées afin d?illustrer le comportement du test proposé.

Estimateurs de calage pour les quantiles Thèses et mémoires dirigés / 2004
Harms, Torsten
Abstract
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Tests d'indépendance en séries chronologiques utilisant la densité spectrale paramétrique Thèses et mémoires dirigés / 2005
Boujamaa, Merzouki
Abstract
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Sur l'étude de la transformation des tests portemanteaux pur séries chronologiques multivariées Thèses et mémoires dirigés / 2006
Poulin, Jennifer, M.Sc
Abstract
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Estimation et validation de modèles non-linéaires multivariés dans l'analyse des séries chronologiques Thèses et mémoires dirigés / 2007
Chabot-Hallé, Dominique
Abstract
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Prévisions robustes pour séries temporelles multivariées Thèses et mémoires dirigés / 2007
Gagné, Christian
Abstract
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Publications choisis Tout déplier Tout replier

On wavelet-based testing for serial correlation of unknown form using Fan's adaptive Neyman method

Li, Linyuan, Yao, Shan et Duchesne, Pierre, On wavelet-based testing for serial correlation of unknown form using Fan's adaptive Neyman method 70, 308--327 (2014), , Comput. Statist. Data Anal.

On testing for causality in variance between two multivariate time series

Tchahou, Herbert Nkwimi et Duchesne, Pierre, On testing for causality in variance between two multivariate time series 83, 2064--2092 (2013), , J. Stat. Comput. Simul.

Controlling the bias of robust small-area estimators

Dongmo Jiongo, V., Haziza, D. et Duchesne, P., Controlling the bias of robust small-area estimators 100, 843--858 (2013), , Biometrika

Distributions for residual autocovariances in parsimonious periodic vector autoregressive models with applications

Duchesne, Pierre et Lafaye de Micheaux, Pierre, Distributions for residual autocovariances in parsimonious periodic vector autoregressive models with applications 34, 496--507 (2013), , J. Time Series Anal.

On testing for independence between the innovations of several time series

Duchesne, Pierre, Ghoudi, Kilani et Rémillard, Bruno, On testing for independence between the innovations of several time series 40, 447--479 (2012), , Canad. J. Statist.

On testing for serial correlation of unknown form using wavelet thresholding

Duchesne, Pierre, Li, Linyuan et Vandermeerschen, Jill, On testing for serial correlation of unknown form using wavelet thresholding 54, 2512--2531 (2010), , Comput. Statist. Data Anal.

The fifth special issue on computational econometrics

Belsley, David A., Duchesne, Pierre, Kapetanios, George, Kontoghiorghes, Erricos John, Paolella, Marc et van Dijk, Herman K., The fifth special issue on computational econometrics 54, 2359 (2010), , Comput. Statist. Data Anal.

Computing the distribution of quadratic forms: further comparisons between the Liu-Tang-Zhang approximation and exact methods

Duchesne, Pierre et Lafaye De Micheaux, Pierre, Computing the distribution of quadratic forms: further comparisons between the Liu-Tang-Zhang approximation and exact methods 54, 858--862 (2010), , Comput. Statist. Data Anal.

On kernel nonparametric regression designed for complex survey data

Harms, Torsten et Duchesne, Pierre, On kernel nonparametric regression designed for complex survey data 72, 111--138 (2010), , Metrika

Authors' corrigenda/corrections des auteurs on testing for multivariate ARCH effects in vector time series models

Duchesne, Pierre et Lalancette, Simon, Authors' corrigenda/corrections des auteurs on testing for multivariate ARCH effects in vector time series models 38, 517 (2010), , Canad. J. Statist.

Corrigendum to: ``On matricial measures of dependence in vector ARCH models with applications to diagnostic checking''

Duchesne, Pierre, Corrigendum to: ``On matricial measures of dependence in vector ARCH models with applications to diagnostic checking'' 80, 910 (2010), , Statist. Probab. Lett.

Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters

Ursu, Eugen et Duchesne, Pierre, Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters 63, 183--212 (2009), , Stat. Neerl.

On multiplicative seasonal modelling for vector time series

Ursu, Eugen et Duchesne, Pierre, On multiplicative seasonal modelling for vector time series 79, 2045--2052 (2009), , Statist. Probab. Lett.

On modelling and diagnostic checking of vector periodic autoregressive time series models

Ursu, Eugen et Duchesne, Pierre, On modelling and diagnostic checking of vector periodic autoregressive time series models 30, 70--96 (2009), , J. Time Series Anal.

On the power transformation of kernel-based tests for serial correlation in vector time series: some finite sample results and a comparison with the bootstrap

Poulin, Jennifer et Duchesne, Pierre, On the power transformation of kernel-based tests for serial correlation in vector time series: some finite sample results and a comparison with the bootstrap 52, 4432--4457 (2008), , Comput. Statist. Data Anal.

On robust forecasting in dynamic vector time series models

Gagné, Christian et Duchesne, Pierre, On robust forecasting in dynamic vector time series models 138, 3927--3938 (2008), , J. Statist. Plann. Inference

Diagnostic checking of multivariate nonlinear time series models with martingale difference errors

Chabot-Hallé, Dominique et Duchesne, Pierre, Diagnostic checking of multivariate nonlinear time series models with martingale difference errors 78, 997--1005 (2008), , Statist. Probab. Lett.

Evaluating financial time series models for irregularly spaced data: a spectral density approach

Duchesne, Pierre et Pacurar, Maria, Evaluating financial time series models for irregularly spaced data: a spectral density approach 35, 130--155 (2008), , Comput. Oper. Res.

On consistent testing for serial correlation in seasonal time series models

Duchesne, Pierre, On consistent testing for serial correlation in seasonal time series models 35, 193--213 (2007), , Canad. J. Statist.

Testing for multivariate autoregressive conditional heteroskedasticity using wavelets

Duchesne, Pierre, Testing for multivariate autoregressive conditional heteroskedasticity using wavelets 51, 2142--2163 (2006), , Comput. Statist. Data Anal.

On testing for serial correlation with a wavelet-based spectral density estimator in multivariate time series

Duchesne, Pierre, On testing for serial correlation with a wavelet-based spectral density estimator in multivariate time series 22, 633--676 (2006), , Econometric Theory

On the asymptotic distribution of residual autocovariances in VARX models with applications

Duchesne, Pierre, On the asymptotic distribution of residual autocovariances in VARX models with applications 14, 449--473 (2005), , Test

Testing for serial correlation of unknown form in cointegrated time series models

Duchesne, Pierre, Testing for serial correlation of unknown form in cointegrated time series models 57, 575--595 (2005), , Ann. Inst. Statist. Math.

Robust and powerful serial correlation tests with new robust estimates in ARX models

Duchesne, Pierre, Robust and powerful serial correlation tests with new robust estimates in ARX models 26, 49--81 (2005), , J. Time Ser. Anal.

On the asymptotic distribution of the residual autocovariance matrices in the autoregressive conditional multinomial model

Duchesne, Pierre, On the asymptotic distribution of the residual autocovariance matrices in the autoregressive conditional multinomial model 83, 193--197 (2004), , Econom. Lett.

On matricial measures of dependence in vector ARCH models with applications to diagnostic checking

Duchesne, Pierre, On matricial measures of dependence in vector ARCH models with applications to diagnostic checking 68, 149--160 (2004), , Statist. Probab. Lett.

On robust testing for conditional heteroscedasticity in time series models

Duchesne, Pierre, On robust testing for conditional heteroscedasticity in time series models 46, 227--256 (2004), , Comput. Statist. Data Anal.

On consistent testing for serial correlation of unknown form in vector time series models

Duchesne, Pierre et Roy, Roch, On consistent testing for serial correlation of unknown form in vector time series models 89, 148--180 (2004), , J. Multivariate Anal.

On testing for multivariate ARCH effects in vector time series models

Duchesne, Pierre et Lalancette, Simon, On testing for multivariate ARCH effects in vector time series models 31, 275--292 (2003), , Canad. J. Statist.

Robust tests for independence of two time series

Duchesne, Pierre et Roy, Roch, Robust tests for independence of two time series 13, 827--852 (2003), , Statist. Sinica

Principal component analysis from the multivariate familial correlation matrix

Bilodeau, Martin et Duchesne, Pierre, Principal component analysis from the multivariate familial correlation matrix 82, 457--470 (2002), , J. Multivariate Anal.

Robust estimation of the SUR model

Bilodeau, Martin et Duchesne, Pierre, Robust estimation of the SUR model 28, 277--288 (2000), , Canad. J. Statist.