Our graduate students
Sarkis Atallah, Marcelo
-
Faculty of Arts and Science - Department of Mathematics and Statistics
André-Aisenstadt Office 4175,6169,6253
Courriels
Research area
Student supervision Expand all Collapse all
Sur la dynamique hamiltonienne et les actions symplectiques de groupes
Theses and supervised dissertations / 2024-07
Sarkis Atallah, Marcelo
Abstract
Abstract
This thesis comprises four articles that study rigidity phenomena of Hamiltonian transfor- mations of symplectic manifolds.
The first article, co-authored with Egor Shelukhin, examines obstructions to the existence of Hamiltonian symmetries of finite order on a closed symplectic manifold (M,ω); Hamil- tonian torsion. In other words, we study the finite subgroups of the group of Hamiltonian diffeomorphisms Ham(M, ω). We identify three primary sources of obstructions:
Topological constraints. Inspired by a result of Polterovich showing that symplectically aspherical symplectic manifolds do not admit Hamiltonian torsion, we establish that the presence of a non-trivial finite subgroup of Ham(M,ω) implies that there exists a sphere A ∈ π2(M) with ⟨[ω],A⟩ > 0 and ⟨c1(M),A⟩ > 0. In particular, symplectically Calabi-Yau, and spherically negative-monotone symplectic manifolds do not admit Hamiltonian torsion.
The presence of J-holomorphic curves. For general closed symplectic manifolds, there are plenty of examples of Hamiltonian torsion, for instance, any rotation of the two-sphere by an irrational fraction of π. When (M, ω) is spherically positive-monotone, we show the existence of Hamiltonian torsion imposes geometrical uniruledness, which implies that non-constant J-holomorphic spheres are ubiquitous. This phenomenon was predicted in a list of problems contained in the introductory monograph of McDuff and Salamon.
The spectral metric rigidity. Our study reveals that for spherically positive-monotone (M, ω), there exists a neighbourhood of the identity in Ham(M,ω), in the topology induced by the spectral metric, that does not contain any non-trivial finite subgroup.
The main result of the second article establishes that for a broad class of symplectic manifolds the flux of a loop of symplectic diffeomorphisms is completely determined by the homotopy class of its orbits. As an application, we obtain a new vanishing result for the flux group and new instances where the existence of a fixed point of a symplectic circle action implies that it is Hamiltonian. Moreover, we obtain obstructions to the existence of non-trivial elements of Symp0(M,ω) that have finite order.
The third article, co-authored with Han Lou, proves a version of the Hofer-Zehnder conjec- ture for closed semipositive symplectic manifolds whose quantum homology is semisimple; this result generalizes the groundbreaking work of Shelukhin in the spherically positive- monotone setting. The result shows that a Hamiltonian diffeomorphism possessing more contractible fixed points, counted homologically, than the total Betti number of the mani- fold, must have infinitely many periodic points. The key component of the proof is a new study of the effect of reduction modulo a prime on the bounds on filtered Floer homology that arise from semisimplicity. It relies on the theory of algebraic extensions of non-Archimedean normed fields.
The fourth article, co-authored with Habib Alizadeh and Dylan Cant, investigates the dis- placeability of a closed Lagrangian submanifold L of a convex-at-infinity symplectic manifold by a compactly supported Hamiltonian diffeomorphism. We conclude that a Hamiltonian diffeomorphism φ whose spectral norm is smaller than some ħ(L) > 0, depending only on L ⊂ W , cannot displace L. Furthermore, we establish a cup-length estimate for the number of action values; when L is rational, this implies a cup-length estimate on the number of intersection points L ∩ φ(L). As a corollary, we demonstrate that the number of fixed points of a Hamiltonian diffeomorphism of a closed rational symplectic manifold (M,ω), whose spectral norm is smaller than the rationality constant, is bounded below by one plus the cup-length of M.