Passer au contenu

/ Département de mathématiques et de statistique

Je donne

Rechercher

Our graduate students

Huguet, Guillaume

Vcard

Faculty of Arts and Science - Department of Mathematics and Statistics

André-Aisenstadt Office 4237

Courriels

Research area

Student supervision Expand all Collapse all

Étude d'algorithmes de simulation par chaînes de Markov non réversibles Theses and supervised dissertations / 2020-10
Huguet, Guillaume
Abstract
Markov chain Monte Carlo (MCMC) methods commonly use chains that respect the detailed balance condition. These chains are called reversible. Most of the theory developed for MCMC evolves around those particular chains. Peskun (1973) and Tierney (1998) provided useful theorems on the ordering of the asymptotic variances for two estimators produced by two different reversible chains. In this thesis, we are interested in non-reversible chains, which are chains that don’t respect the detailed balance condition. We present algorithms that simulate non-reversible chains, mainly the Guided Random Walk (GRW) by Gustafson (1998) and the Discrete Bouncy Particle Sampler (DBPS) by Sherlock and Thiery (2017). For both algorithms, we compare the asymptotic variance of estimators with the ones produced by the Metropolis- Hastings algorithm. We present a recent theoretical framework introduced by Andrieu and Livingstone (2019) and their analysis of the GRW. We then show that the DBPS is part of this framework and present an analysis on the asymptotic variance of estimators. Their main theorem can provide an ordering of the asymptotic variances of two estimators resulting from nonreversible chains. We show that an estimator could have a lower asymptotic variance by adding propositions to the DBPS. We then present empirical results of a modified DBPS. Through the thesis we will mostly be interested in chains that are produced by deterministic proposals. We show a general construction of the delayed rejection algorithm using deterministic proposals and one possible equivalent for non-reversible chains.