Passer au contenu

/ Département de mathématiques et de statistique

Je donne

Rechercher

Sujets par mots-clés

Nos professeurs et chercheurs offrent une large expertise dans des domaines de pointe. Leurs recherches portent sur des sujets très variés donnés dans la liste ci-dessous.

Pour la liste complète de nos experts, consultez le répertoire du Département

Axes

Delfour, Michel

Delfour, Michel

Professeur associé,Professeur émérite

 

Michel Delfour est fellow Guggenheim, Killam, et SIAM et récipient du prix Urgel-Archambault en physique, mathématiques et génie de l'Acfas. Ses domaines de recherche sont l'optimisation et le design de forme, l'analyse et le contrôle des systèmes d'équations différentielles à retard et/ou aux dérivées partielles, le contrôle et la stabilisation des structures spatiales, et les méthodes numériques en équations différentielles et en optimisation. Parmi ses intérêtes récents, on retrouve l'affectation des fréquences radio aux systèmes de mobiles terrestres, la modélisation des coques minces et asymptotiques, le design des endoprothèses en cardiologie interventionnelle, et le design de la dynamique du largage des médicaments. Il est l'auteur de 13 livres et de plus de 175 articles. Il fut président de la Société mathématique du Canada et a servi sur de nombreux conseils et comités de subvention canadiens ainsi que sur des panels et comités d'administration d'organismes internationaux.  Il est membre de l'Ordre des Ingénieurs du Québec depuis 1966 et a été impliqué dans plusieurs activités conseils pour des organismes canadiens.

 

Lire plus ...

Profil complet

Gauthier, Paul M

Professeur associé

J'ai fait de la recherche en analyse complexe et en théorie du potentiel - surtout l'approximation par fonctions holomorphes ou harmoniques. Depuis quelques années, je rode autour de l'hypothèse de Riemann en utilisant des méthodes d'approximation complexe plutôt que de la théorie des nombres. 

Pour toutes mes publications, voir mathscinet

Lire plus ...

Profil complet

NOUTCHEGUEME, Alain Didier

Chargé de cours

Je travaille dans un domaine des mathématiques qui s'appelle la géométrie spectrale. Il s'agit d'un domaine pile à l'intersection de l'analyse et de la géométrie.

Les problèmes de la géométrie spectrale sont motivés par l'étude des phénomènes de la vie courante, comme la propagation des sons et de la chaleur, les oscillations des fluides, ainsi que les effets quantiques. En effet, les physiciens parviennent à faire parler la nature dans la langue mathématique pour utiliser la puissance de ce formalisme et déduire des propriétés qu’on pourrait alors appliquer ; mais ceci est possible à condition d’avoir une théorie mathématique suffisamment développée.

Le grand objectif de la géométrie spectrale est de comprendre le lien entre la forme d’un objet (sa géométrie) et les phénomènes physiques qui y ont lieu (propriétés spectrales). C’est la raison pour laquelle les résultats de la géométrie spectrale s’appliquent directement dans plusieurs situations importantes : notamment en géophysique et imagerie médicale, ainsi qu'en traitement d'images en informatique. De plus, l’avantage de travailler avec des concepts abstraits est qu’ils vont pouvoir se réincarner dans de nouveaux concepts : Nous ne sommes pas à l’abris de nouvelles applications dans le futur.

La géométrie spectrale est trop vaste pour être étudiée en globalité, elle poursuit donc plusieurs sous objectifs. L’un d’eux auquel je consacre mon travail de recherche se nomme l’optimisation de forme.

De même que le biologiste a besoin du microscope pour observer les microbes, pour atteindre ses objectifs, le géomètre spectral qui fait de l’optimisation de forme développe des outils parmi lesquels des inégalités dites isopérimétriques. Il s'agit un domaine en développement rapide, connecté à plusieurs sujets de mathématiques comme la théorie des graphes ou l’homogénéisation.

Dans ma recherche, je chercher à caractériser des géométries qui vont maximiser différents types de problèmes spectraux à l'instar des valeurs propres du p-Laplacien, ou bien des valeurs propres problèmes de type diffusion. Ces derniers s’observent lors de l’écoulement d’une substance à travers un milieu ou une membrane avec une moyenne de vitesse d’entrée/sortie proportionnelle à l’écoulement. Dans le cas de domaines symétriques, ses géométries s’immergent dans des surfaces minimales lisses par morceaux.

L'objectif global est de classifier les géométries maximales dans différentes situations, ce qui augmentera de manière substantielle nos connaissances entre la théorie des transformations harmoniques et la géométrie spectrale.

Lire plus ...

Profil complet

Silvestre Roselló, Irene

Chargé de cours

Codes-barres des fonctions propres de l'opérateur de Laplace-Beltrami.

 

Lire plus ...

Profil complet