Passer au contenu

/ Département de mathématiques et de statistique

Je donne

Rechercher

 

Wolf, Guy

Vcard

Professeur agrégé

Faculté des arts et des sciences - Département de mathématiques et de statistique

André-Aisenstadt Local 6165

514 343-6694

Courriels

Affiliations

  • Membre Institut de valorisation des données
  • Membre Institut des algorithmes d'apprentissage de Montréal
  • Membre IVADO — Institut de valorisation des données
  • Membre MILA — Institut des algorithmes d'apprentissage de Montréal

Cours donnés

  • MAT6495 A - Théorie spectrale des graphes

Expertise

Mes sujets de recherche se situent à l'intersection de l'apprentissage automatique, des sciences des données et des mathématiques appliquées. En particulier, je suis intéressé par les méthodes d'exploration des données qui utilisent l'apprentissage des variétés et l'apprentissage profond géométrique. Je m'intéresse aussi aux applications d'analyse exploratoire des données biomédicales, surtout ceux qui portent sur les données de cellules uniques (p.ex. scRNA-seq et CyTOF).

Encadrement Tout déplier Tout replier

Horseshoe regularization for wavelet-based lensing inversion Thèses et mémoires dirigés / 2024-03
Nafisi, Hasti
Abstract
Gravitational lensing, a phenomenon in astronomy, occurs when the gravitational field of a massive object, such as a galaxy or a black hole, bends the path of light from a distant object behind it. This bending results in a distortion or magnification of the distant object's image, often seen as arcs or rings surrounding the foreground object. The Starlet wavelet transform offers a robust approach to representing galaxy images sparsely. This technique breaks down an image into wavelet coefficients at various scales and orientations, effectively capturing both large-scale structures and fine details. The Starlet wavelet transform offers a robust approach to representing galaxy images sparsely. This technique breaks down an image into wavelet coefficients at various scales and orientations, effectively capturing both large-scale structures and fine details. The horseshoe prior has emerged as a highly effective Bayesian technique for promoting sparsity and regularization in statistical modeling. It aggressively shrinks negligible values while preserving important features, making it particularly useful in situations where the reconstruction of an original image from limited noisy observations is inherently challenging. The main objective of this thesis is to apply sparse regularization techniques, particularly the horseshoe prior, to reconstruct the background source galaxy from gravitationally lensed images. By demonstrating the effectiveness of the horseshoe prior in this context, this thesis tackles the challenging inverse problem of reconstructing lensed galaxy images. Our proposed methodology involves applying the horseshoe prior to the wavelet coefficients of lensed galaxy images. By exploiting the sparsity of the wavelet representation and the noise-suppressing behavior of the horseshoe prior, we achieve well-regularized reconstructions that reduce noise and artifacts while preserving structural details. Experiments conducted on simulated lensed galaxy images demonstrate lower mean squared error and higher structural similarity with the horseshoe prior compared to alternative methods, validating its efficacy as an efficient sparse modeling technique.

Projets de recherche Tout déplier Tout replier

Vers une meilleure compréhension et une utilisation efficace du calcul en profondeur dans les réseaux de neurones modernes FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2023 - 2026

Des données pour raconter // Vincent Chrétien SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2023 - 2023

Centre de recherches mathématiques (CRM) FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2022 - 2029

Diffusion Geometry & Topology Approach to Data Fusion and Mitigating Batch Effects SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2022 - 2024

Representation learning and exploration of data geometries CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2021 - 2027

Representation learning and exploration of data geometries CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2021 - 2025

Exploitation de structures de graphes dans les réseaux de neurones par transformée de scattering géométrique FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2021 - 2024

Geometry preserving deep networks SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2021 - 2024

Integreted data-driven approaches for understanding immunological data SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2021 - 2021

Unified approach to graph structure utilization in data science SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2020 - 2023

PHATE-NET SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2020 - 2020

Finding emergent structure un multi-sample biological data with the dual geometry of cells and features NIH/National Institutes of Health (NIH) / 2019 - 2023

Probing learned network structure in a multi-task setting SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2019 - 2019

Programme de fonds de démarrage et d'opération pour professeure IVADO - Compte pour le fonds d'opération - Guy Wolf SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2018 - 2022

Programme de fonds de démarrage et d'opération pour professeure IVADO - Compte pour le fonds d'opération - Guy Wolf SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2018 - 2021

Programme de fonds de démarrage et d'opération pour professeure IVADO - Compte pour le fonds de démarrage - Guy Wolf SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2018 - 2019