Passer au contenu

/ Département de mathématiques et de statistique

Rechercher

 

Hussin, Véronique

Vcard

Professeure titulaire

Faculté des arts et des sciences - Département de mathématiques et de statistique

André-Aisenstadt local 5227

514 343-7814

Courriels

Affiliations

  • Membre - CRM — Centre de recherches mathématiques

Cours donnés

  • MAT1600 A - Algèbre linéaire

Expertises

Mon programme de recherche consiste en deux thèmes principaux qui sont reliés à l'étude des systèmes super-symétriques intégrables et résolubles qui apparaissent en physique classique et quantique. Dans le cadre de cette recherche, j'utilise les méthodes de théorie des groupes et super-groupes de Lie. Ces systèmes physiques décrivent de façon unifiée les bosons et fermions en physique des particules. La super-symétrie donne aussi une façon d'inclure la force gravitationnelle dans la théorie unifiée des forces de la nature.

Dans le premier thème, je travaille à générer de nouvelles solutions pour des équations différentielles non-linéaires super-symétriques. Ces solutions sont appelées des multi-solitons ou ondes solitaires multiples car elles maintiennent leur forme même après interaction avec d'autres telles ondes. Il existe un grand nombre de telles équations et nous utilisons les méthodes de réduction par symétries ainsi que le formalisme de bilinéarisation pour les résoudre avec des applications potentielles en super-gravité et super-cordes. Je travaille aussi avec des extensions super-symétriques de modèles utilisés dans les théories de jauge de la physique des particules élémentaires. D'importantes propriétés des modèles sigma super-symétriques sont examinées afin de mieux comprendre la géométrie de tels systèmes.

Dans le second thème, je m'intéresse aux théories quantiques super-symétriques multidimensionnelles afin de générer de nouveaux partenaires super-symétriques exactement résolubles. Je prévois aussi relier l'existence de super-charges aux dégénérescences accidentelles de tels systèmes. Finalement, mes travaux sur les états cohérents et comprimés de modèles quantiques avec potentiel anharmonique sont poussés plus avant pour, non seulement, viser les applications aux systèmes de molécules diatomiques mais aussi, la généralisation à des systèmes à plusieurs dimensions. Je veux aussi établir de façon rigoureuse le lien entre ces états quantiques et leur correspondant classique. Récemment, ces états cohérents et comprimés constituent un instrument important pour étudier des processus en informatique quantique et il serait utile de voir comment nos constructions pourraient influencer les développements dans ce domaine.

Encadrement Tout déplier Tout replier

Supersymétrisation des équations de KDV et mKDV et solutions supersolitoniques Thèses et mémoires dirigés / 2007
Bolduc, Marie-Josée
Abstract
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Propriétés géométriques des surfaces associées aux solutions des modèles sigma grassmanniens en deux dimensions Thèses et mémoires dirigés / 2014-08
Delisle, Laurent
Abstract
Dans cette thèse, nous analysons les propriétés géométriques des surfaces obtenues des solutions classiques des modèles sigma bosoniques et supersymétriques en deux dimensions ayant pour espace cible des variétés grassmanniennes G(m,n). Plus particulièrement, nous considérons la métrique, les formes fondamentales et la courbure gaussienne induites par ces surfaces naturellement plongées dans l'algèbre de Lie su(n). Le premier chapitre présente des outils préliminaires pour comprendre les éléments des chapitres suivants. Nous y présentons les théories de jauge non-abéliennes et les modèles sigma grassmanniens bosoniques ainsi que supersymétriques. Nous nous intéressons aussi à la construction de surfaces dans l'algèbre de Lie su(n) à partir des solutions des modèles sigma bosoniques. Les trois prochains chapitres, formant cette thèse, présentent les contraintes devant être imposées sur les solutions de ces modèles afin d'obtenir des surfaces à courbure gaussienne constante. Ces contraintes permettent d'obtenir une classification des solutions en fonction des valeurs possibles de la courbure. Les chapitres 2 et 3 de cette thèse présentent une analyse de ces surfaces et de leurs solutions classiques pour les modèles sigma grassmanniens bosoniques. Le quatrième consiste en une analyse analogue pour une extension supersymétrique N=2 des modèles sigma bosoniques G(1,n)=CP^(n-1) incluant quelques résultats sur les modèles grassmanniens. Dans le deuxième chapitre, nous étudions les propriétés géométriques des surfaces associées aux solutions holomorphes des modèles sigma grassmanniens bosoniques. Nous donnons une classification complète de ces solutions à courbure gaussienne constante pour les modèles G(2,n) pour n=3,4,5. De plus, nous établissons deux conjectures sur les valeurs constantes possibles de la courbure gaussienne pour G(m,n). Nous donnons aussi des éléments de preuve de ces conjectures en nous appuyant sur les immersions et les coordonnées de Plücker ainsi que la séquence de Veronese. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Le troisième chapitre présente une analyse des surfaces à courbure gaussienne constante associées aux solutions non-holomorphes des modèles sigma grassmanniens bosoniques. Ce travail généralise les résultats du premier article et donne un algorithme systématique pour l'obtention de telles surfaces issues des solutions connues des modèles. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Dans le dernier chapitre, nous considérons une extension supersymétrique N=2 du modèle sigma bosonique ayant pour espace cible G(1,n)=CP^(n-1). Ce chapitre décrit la géométrie des surfaces obtenues des solutions du modèle et démontre, dans le cas holomorphe, qu'elles ont une courbure gaussienne constante si et seulement si la solution holomorphe consiste en une généralisation de la séquence de Veronese. De plus, en utilisant une version invariante de jauge du modèle en termes de projecteurs orthogonaux, nous obtenons des solutions non-holomorphes et étudions la géométrie des surfaces associées à ces nouvelles solutions. Ces résultats sont soumis dans la revue Communications in Mathematical Physics.

Génération d'états cohérents et comprimés pour des algèbres et superalgèbres de symétrie de systèmes quantiques Thèses et mémoires dirigés / 2004
Alvarez Moraga, Nibaldo
Abstract
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Symétries, supersymétries et solutions des équations de la mécanique des fluides Thèses et mémoires dirigés / 2005
Hariton, Alexander
Abstract
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Projets de recherche Tout déplier Tout replier

Supersymétries et systèmes quantiques et classiques résolubles et intégrables CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2017 - 2023

Ficm 2017-2018 Fondation de l'Institut de cardiologie de Montréal / 2017 - 2018

Centre de recherches mathematiques (crm) FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2015 - 2022

Supersymmetric solvavle and integrable systems in quantum and classical physics FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2011 - 2015

Centre de recherches mathematiques (crm) FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2008 - 2016

Supersymmetric solvavle and integrable systems in quantum and classical physics CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 1994 - 2017

Publications choisis Tout déplier Tout replier

Classical ladder functions for Rosen-Morse and curved Kepler-Coulomb systems

L. Delisle-Doray, V. Hussin, S. Kuru, J. Negro, Classical ladder functions for Rosen-Morse and curved Kepler-Coulomb systems 405, 69-82 (2019), , Annals of Physics

Ladder operators and coherent states for multi-step supersymmetric rational extensions of the truncated oscillator

Scott E. Hoffmann, Véronique Hussin, Ian Marquette and Yao-Zhong Zhang, , Ladder operators and coherent states for multi-step supersymmetric rational extensions of the truncated oscillator , (2019), , J. Mathematical Physics

Squeezed atom laser for Bose-Einstein condensate with minimal length,

Dey, Sanjib, Hussin, Veronique, , Squeezed atom laser for Bose-Einstein condensate with minimal length, , (2019), , International Journal of Theoretical Physics (IJTP))

Constant curvature holomorphic solutions of the supersymmetric grassmannian sigma model: the case of G(2, 4)

V. Hussin, M. Lafrance and I. Yurdusen, , Constant curvature holomorphic solutions of the supersymmetric grassmannian sigma model: the case of G(2, 4) , (2019), , J. Phys. A

A squeezed review on coherent states and nonclassicality for non-Hermitian systems with minimal length

Sanjib Dey, Andreas Fring, Véronique Hussin, A squeezed review on coherent states and nonclassicality for non-Hermitian systems with minimal length 205, Chapitre 11 (2018), , J.-P. Antoine et al. (eds.), Coherent States and Their Applications, Springer Proceedings ?in Physics

Non-classical behaviour of coherent states for systems constructed using exceptional orthogonal polynomials

Hoffmann SE, Hussin V, Marquette I, Zhang YZ. , Non-classical behaviour of coherent states for systems constructed using exceptional orthogonal polynomials 51, 08520 (2018), , J Phys A: Math Theor.

Coherent states for the supersymmetric partners of the truncated oscillator

David J. Fernandez C., Véronique Hussin, Vicente Said Morales-Salgado, Coherent states for the supersymmetric partners of the truncated oscillator 134, 18 (2018), , The European Physical Journal Plus,

Coherent states for ladder operators of general order related to exceptional orthogonal polynomials

Scott E. Hoffmann, Véronique Hussin, Ian Marquette and Yao-Zhong Zhang , Coherent states for ladder operators of general order related to exceptional orthogonal polynomials 51, 315203 (2018), , J Phys A: Math Theor.

Nonclassical States for Non-Hermitian Hamiltonians with the Oscillator Spectrum

Zelaya, Kevin; Dey, Sanjib; Hussin, Véronique; Rosas-Ortiz, Oscar , Nonclassical States for Non-Hermitian Hamiltonians with the Oscillator Spectrum , (2018), , J. Phys A

Generalized squeezed states

Kevin Zelaya, Sanjib Dey, and Véronique Hussin , Generalized squeezed states 382, 3369 (2018), , Physics Letters A

Coherent states for supersymmetric partners of the infinite well

Hussin V, Morales-Salgado VS, Coherent states for supersymmetric partners of the infinite well 839, 012017 (2017), , Journal of Physics: Conference Series (JPCS)

Special Issue on Symmetries and Integrability of Difference Equations

Guest editors: V. Hussin, D. Levi, Z. Thomova, P. Winternitz, Special Issue on Symmetries and Integrability of Difference Equations , (2017), , Sigma

Nonclassicality versus entanglement in a noncommutative space

S. Dey, A. Fring, V. Hussin, Nonclassicality versus entanglement in a noncommutative space 31, 1650248 (2017), , Int. J. Mod. Phys. B

General solutions of the superymmetric $CP^2$ sigma model and its generalisation to $CP^(N-1)$

DELISLE, L, HUSSIN, V and ZAKRZEWSKI, W, General solutions of the superymmetric $CP^2$ sigma model and its generalisation to $CP^(N-1)$ 57, 023506 (2016), , J. Math. Phys.

Noncommutative $q$-photon-added coherent states

Dey S. and Hussin V., Noncommutative $q$-photon-added coherent states 93, 053824 (2016), , Phys.Rev.A

Higher Order Nonclassicality from Nonlinear Coherent States for Models with Quadratic Spectrum

Anaelle Hertz, Sanjib Dey, Véronique Hussin and Hichem Eleuch, Higher Order Nonclassicality from Nonlinear Coherent States for Models with Quadratic Spectrum 8(5), 36 (2016), 10.3390/sym8050036, Symmetry

Nonclassicality versus entanglement in a noncommutative space

Dey S, Fring A, Hussin V, Nonclassicality versus entanglement in a noncommutative space 30, 1650248 (20 Pages) (2016), , International Journal of Modern Physics B

Higher Order Nonclassicality from Nonlinear Coherent States for Models with Quadratic Spectrum

Hertz A, Dey S, Hussin V, Eleuch H, Higher Order Nonclassicality from Nonlinear Coherent States for Models with Quadratic Spectrum 8, 36-1-9 (2016), , Symmetry

Supersymetric infinite wells and coherent states

FISET M.A - HUSSIN V., Supersymetric infinite wells and coherent states 624, 012016 (2015), , Journal of Physics Conference Series (JPCS)

Entangled squeezed states in noncommutative spaces with minimal length uncertainty relations

Dey S. and Hussin V., Entangled squeezed states in noncommutative spaces with minimal length uncertainty relations 91, 124017 (2015), , Phys. Rev. D

Geometry of surfaces associated to grassmanian sigma models,

Delisle L, Hussin V and Zakrzewski W J, , Geometry of surfaces associated to grassmanian sigma models, 597, 012029-1-10 (2015), , Journal of Physics: Conference Series (JPCS),

Supersymmetric infinite wells and coherent states,

Fiset M-A, Hussin V, , Supersymmetric infinite wells and coherent states, 624, 012016-1-11 (2015), , Journal of Physics Conference Series (JPCS),

Geometry of surfaces associated to grassmanian sigma models

DELISLE, L, HUSSIN, V and ZAKRZEWSKI, W, Geometry of surfaces associated to grassmanian sigma models 597, 012029 (2015), , Journal of Physics Conference Series (JPCS)

Generalised and Gaussian Coherent States of the 1D and 2D Infinite Square Well Quantum Systems

Fiset M.-A. Hussin V., Generalised and Gaussian Coherent States of the 1D and 2D Infinite Square Well Quantum Systems , (2014), , .

Entanglement created with generalized squeezed coherent states through a beam splitter

Hertz a. - Hussin V., Entanglement created with generalized squeezed coherent states through a beam splitter , (2014), , .

Constant curvature solutions of Grassmannian sigma models: (1) Holomorphic solutions

DELISLE, L., HUSSIN, V. et ZAKRZEWSKI, W. J., Constant curvature solutions of Grassmannian sigma models: (1) Holomorphic solutions 66, 24--36 (2014), , J. Geom. Phys.

Constant curvature surfaces of the Susy $CP^(N-1)$ model

DELISLE, L, HUSSIN, V, YURDUSEN, I, and ZAKRZEWSKI, W., Constant curvature surfaces of the Susy $CP^(N-1)$ model 56, 023506 (2014), , Journal of Mathematical Physics, 2014

Constant curvature solutions of Grassmannian sigma models: (2) Non-holomorphic solutions

DELISLE, L., HUSSIN, V. et ZAKRZEWSKI, W. J., Constant curvature solutions of Grassmannian sigma models: (2) Non-holomorphic solutions 71, 1--10 (2013), , J. Geom. Phys.

Squeezed coherent states and the one-dimensional Morse quantum system

ANGELOVA, M , HERTZ, A, & HUSSIN, V, Squeezed coherent states and the one-dimensional Morse quantum system , (2012), , J. Phys A

New solution of the N = 2 Supersymmetric KdV equation via Hirota methods

DELISLE, L, & HUSSIN, V, New solution of the N = 2 Supersymmetric KdV equation via Hirota methods 343 , 012030 (2012), , J. Phys. : Conf. Ser.

Soliton and similarity solutions of $\scr N=2,4$ supersymmetric equations

DELISLE, LAURENT et HUSSIN, VÉRONIQUE, Soliton and similarity solutions of $\scr N=2,4$ supersymmetric equations 4, 441-451 (2012), , Symmetry

New solution of the N = 2 Supersymmetric KdV equation via Hirota methods

DELISLE, L, and HUSSIN, V, , New solution of the N = 2 Supersymmetric KdV equation via Hirota methods Volume 343, (2012), , Journal of Physics: Conference Series, conference 1

A convenient criterion under which $Z_2$-graded operators are hamiltonian

HUSSIN, V & KISELEV, A, A convenient criterion under which $Z_2$-graded operators are hamiltonian 284 , 012035, (2011), , Journal of Physics: Conference Series

Generalised Heisenberg algebras, SUSYQM and degeneracies: Infinite well and Morse potential

HUSSIN, V & MARQUETTE, I, Generalised Heisenberg algebras, SUSYQM and degeneracies: Infinite well and Morse potential 7, 024, (2011), , SIGMA

Generalised Heisenberg algebras, SUSYQM and degeneracies: Infinite well and Morse potential, Proceedings of the International Workshop ?Supersymmetric Quantum Mechanics and Spectral Design?

HUSSIN, V and MARQUETTE, I, Generalised Heisenberg algebras, SUSYQM and degeneracies: Infinite well and Morse potential, Proceedings of the International Workshop ?Supersymmetric Quantum Mechanics and Spectral Design? 024, 16 (2011), , SIGMA 7 (2011)

A convenient criterion under which $Z_2$-graded operators are hamiltonian

HUSSIN, V, KISELEV, A., A convenient criterion under which $Z_2$-graded operators are hamiltonian , 6 (2011), , Journal of Physics: Conference Series 284 - Proceedings of the 28th International Colloquium on Group Theoretical Methods in Physics

Proceedings of the 28th International Colloquium on Group Theoretical Methods in Physics

GUEST EDITORS: ANGELOVA M., ZAKRZEWSKI W., HUSSIN V. AND PIETTE B., Proceedings of the 28th International Colloquium on Group Theoretical Methods in Physics , (2011), , IoP Journal of Physics Conference Series (JPCS) (July 2010, Newcastle, UK)

Proceedings of the International Workshop ?Supersymmetric Quantum Mechanics and Spectral Design?

GUEST EDITORS: HUSSIN V., NEGRO J., NIETO L. AND SMILGA A., Proceedings of the International Workshop ?Supersymmetric Quantum Mechanics and Spectral Design? , (2011), , July 2010, CCBPP, Benasque, Spain 2011.

Arbitres pour les revues: International Journal of Theoretical Physiscs, Journal of Physics A, Journal of Mathematical Physics, Physics Letters A, Computer Physics Communications, Canadian Journal of Physics.

HUSSIN, V., Arbitres pour les revues: International Journal of Theoretical Physiscs, Journal of Physics A, Journal of Mathematical Physics, Physics Letters A, Computer Physics Communications, Canadian Journal of Physics. , (2011), , International Journal of Theoretical Physiscs, Journal of Physics A, Journal of Mathematical Physics, Physics Letters A, Computer Physics Communications, Canadian Journal of Physics.

Canonical surfaces associated with projectors in Grassmannian sigma models

V. HUSSIN, V, YURDUSEN, I & ZAKRZEWSKI, W. J., Canonical surfaces associated with projectors in Grassmannian sigma models 51, 103509-1-15 (2010), , J. Math. Phys.

N=2 supersymmetric a=4 KDV Hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation

HUSSIN, V, KISELEV, A. V. KRUTOV, A O & WOLF T, N=2 supersymmetric a=4 KDV Hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation 51, 083507-1-19 (2010), , J. Math. Phys.

$N=2$ supersymmetric $a=4$-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation

HUSSIN, V., KISELEV, A. V., KRUTOV, A. O. et Wolf, T., $N=2$ supersymmetric $a=4$-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation 51, 083507, 19 (2010), , J. Math. Phys.

Virtual Hirota's Multi-soliton Solutions of N=2 Supersymmetric Korteweg-de Vries Equations

HUSSIN,V. & KISELEV, A, Virtual Hirota's Multi-soliton Solutions of N=2 Supersymmetric Korteweg-de Vries Equations 159, 832-840 (2009), , Theor. Math. Phys.

Hirota's virtual multisoliton solutions of $N=2$ supersymmetric Korteweg-de Vries equations

KISELEV, A. V. et HUSSIN, V., Hirota's virtual multisoliton solutions of $N=2$ supersymmetric Korteweg-de Vries equations 159, 490--501 (2009), , Teoret. Mat. Fiz.

Generalized and Gaussian coherent states for the Morse potential

ANGELOVA, M. et HUSSIN, V., Generalized and Gaussian coherent states for the Morse potential 41, 304016, 13 (2008), , J. Phys. A

Quaternionic Kàhler manifolds, constrained instantons and the magic square. I

DASGUPTA, KESHAV, HUSSIN, VÉRONQUE et WISSANJI, ALISHA, Quaternionic Kàhler manifolds, constrained instantons and the magic square. I 793, 34--82 (2008), , Nuclear Phys. B

Coherent states for Hamiltonians generated by supersymmetry

FERNANDEZ, DAVID J., HUSSIN, VÉRONIQUE et ROSAS-ORTIZ, OSCAR, Coherent states for Hamiltonians generated by supersymmetry 40, 6491--6511 (2007), , J. Phys. A

Degenerate discrete energy spectra and associated coherent states

DELLO SBARBA, L. et HUSSIN, V., Degenerate discrete energy spectra and associated coherent states 48, 012110, 15 (2007), , J. Math. Phys.

Outreach in Mathematics-Activities, Engagement and Reflection

HUSSIN, V. and MULLER, E., Outreach in Mathematics-Activities, Engagement and Reflection , 17-35 (2007), , Report on Working group A, Proceedings 2007 Annuel Meeting GCEDM, Univ. New Brunswick

$CP^(N-1)$ model and surfaces in $R^(N^2-1)$

HUSSIN, V. and ZAKRZEWSKI, W. J., Susy, $CP^(N-1)$ model and surfaces in $R^(N^2-1)$ 39, 14231-14240 (2006), , J. Phys. A

Generalized Jaynes-Cummings Hamiltonians by shape-invariant hierarchies and their SUSY partners

HUSSIN, V., KURU, S. et NEGRO, J., Generalized Jaynes-Cummings Hamiltonians by shape-invariant hierarchies and their SUSY partners 39, 11301--11311 (2006), , J. Phys. A

Ladder operators and coherent states for the Jaynes-Cummings model in the rotating-wave approximation

HUSSIN, V. et NIETO, L. M., Ladder operators and coherent states for the Jaynes-Cummings model in the rotating-wave approximation 46, 122102, 21 (2005), , J. Math. Phys.

Invariant solutions of a supersymmetric fluid model

HARITON, A. J. et HUSSIN, V., Invariant solutions of a supersymmetric fluid model 38, 6803--6822 (2005), , J. Phys. A

Degeneracies in the energy spectrum of the Jaynes-Cummings Hamiltonian, Group Theoretical Methods in Physics: Proceedings of the XXV International Colloqium on Group Theoretical Methods in Physics

DELLO SBARBA, L. and HUSSIN, V., Degeneracies in the energy spectrum of the Jaynes-Cummings Hamiltonian, Group Theoretical Methods in Physics: Proceedings of the XXV International Colloqium on Group Theoretical Methods in Physics 185, (2005), , Institute of Physics Conference Series, G.S. Pogosyan, L.E. Vicent and K.B. Wolf, Eds. , IOP, Bristol

Preface [International Conference on Progress in Supersymmetric Quantum Mechanics]

AREF'EVA, I., FERNANDEZ, D. J., HUSSIN, V., NEGRO, J., NIETO, L. M. et SAMSONOV, B. F., Preface [International Conference on Progress in Supersymmetric Quantum Mechanics] 37, vii (2004), , J. Phys. A

V., sh(2/2) superalgebra eigenstates and generalized supercoherent and supersqueezed statessupercoherent and supersqueezed states

ALVAREZ-MORAGA, NIBALDO et HUSSIN, VÉRONIQUE, V., sh(2/2) superalgebra eigenstates and generalized supercoherent and supersqueezed statessupercoherent and supersqueezed states 43, 179--218 (2004), , Internat. J. Theoret. Phys.

Special Issue dedicated to the subject of the International Conference on Progress in Supersymmetric Quantum Mechanics

GUEST EDITORS : I. AREF'EVA, D. J. FERNANDEZ, V. HUSSIN, J. NEGRO, L. M. NIETO AND B. F. SAMSONOV., Special Issue dedicated to the subject of the International Conference on Progress in Supersymmetric Quantum Mechanics , 10007-10458 (2004), , (PSQM'03) (Valladolid, Spain, 15-19 July 2003, J. Phys A,37(2004)

Invariant vector fields and the prolongation method for supersymmetric quantum systems

ALVAREZ-MORAGA, NIBALDO et HUSSIN, VÉRONIQUE, Invariant vector fields and the prolongation method for supersymmetric quantum systems 36, 9479--9506 (2003), , J. Phys. A

Group-invariant solutions of relativistic and nonrelativistic models in field theory

GRUNDLAND, A. M., HARITON, A. J. et HUSSIN, V., Group-invariant solutions of relativistic and nonrelativistic models in field theory 44, 2874--2890 (2003), , J. Math. Phys.

The Jaynes-Cummings model and raising and lowering operators

HUSSIN, V., and NIETO, L.M., The Jaynes-Cummings model and raising and lowering operators , (2003), , Proceedings of the XXIV International Colloquium on Group Theoretical Methods in Physics, Paris, France, Inst. Phys. Conf. Ser. 173, 557-560

General sets of coherent states and the Jaynes-Cummings model

DAOUD, M. et HUSSIN, V., General sets of coherent states and the Jaynes-Cummings model 35, 7381--7402 (2002), , J. Phys. A

Generalized coherent and squeezed states based on the $h(1)\oplus{\rm su}(2)$ algebra

ALVAREZ M., NIBALDO et HUSSIN, VÉRONIQUE, Generalized coherent and squeezed states based on the $h(1)\oplus{\rm su}(2)$ algebra 43, 2063--2096 (2002), , J. Math. Phys.

Energies of the Jaynes-Cummings model in the squeeze-coherent states

FRANKLAND, M. and HUSSIN, V., Energies of the Jaynes-Cummings model in the squeeze-coherent states , (2002), , Proceedings of the 7th Int. Conf. on Squeezed States and Uncertainty relations, Boston-USA, ), www.wam.umd.edu/~ys/boston.html

Generalized minimum uncertainty relation and a new class of super-squeezed states

HUSSIN V., Generalized minimum uncertainty relation and a new class of super-squeezed states pp. 198-201, (2000), , Proceedings of the 6th Int. Conf. on Squeezed States and Uncertainty relations, Naples - Italie

Grassman-valued differential equations and a method of resolution, based on Lie supergroup theory

HUSSIN V., Grassman-valued differential equations and a method of resolution, based on Lie supergroup theory 10, 47-57 (2000), , Mathematics newsletter (India)

Kinematical superalgebras

HUSSIN, V., NEGRO, J. et DEL OLMO, M. A., Kinematical superalgebras 32, 5097--5121 (1999), , J. Phys. A

Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states

FERNANDEZ C., DAVID J. et HUSSIN, Véronique, Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states 32, 3603--3619 (1999), , J. Phys. A

Group invariant solutions for the $N=2$ super Korteweg-de-Vries equation

AYARI, M. A., HUSSIN, V. et WINTERNITZ, P., Group invariant solutions for the $N=2$ super Korteweg-de-Vries equation 40, 1951--1965 (1999), , J. Math. Phys.

Computation of Lie supersymmetries for the supersymmetric two bosons equations

AYARI, M. A., AYARI, M. I. et HUSSIN, V., Computation of Lie supersymmetries for the supersymmetric two bosons equations 115, 416--427 (1998), , Comput. Phys. Comm.

A simple generation of exactly solvable anharmonic oscillators

FERNANDEZ C., D. J., HUSSIN, V. et MIELNICK, B., A simple generation of exactly solvable anharmonic oscillators 244, 309--316 (1998), , Phys. Lett. A

Classification of the quantum deformations of the superalgebra ${\rm gl}(1\vert 1)$

FRAPPAT, L., HUSSIN, V. et RIDEAU, G., Classification of the quantum deformations of the superalgebra ${\rm gl}(1\vert 1)$ 31, 4049--4072 (1998), , J. Phys. A

Supersolitonic Solutions for the N = 2 super - Kdv equation

AYARI A. and HUSSIN V., Supersolitonic Solutions for the N = 2 super - Kdv equation , 248-250 (1998), , Proceedings of the Fifth International Wigner Symposium, Vienna (Austria) World Scientific, Singapore

GLie: a MAPLE program for Lie supersymmetries of Grassmann-valued differential equations

AYARI, M. A. et HUSSIN, V., GLie: a MAPLE program for Lie supersymmetries of Grassmann-valued differential equations 100, 157--176 (1997), , Comput. Phys. Comm.

Computation of Lie Supersymmetries for Grassmann-valued Differential Equations

AYARI, A. and HUSSIN V., Computation of Lie Supersymmetries for Grassmann-valued Differential Equations 2, 1032-1035 (1997), , Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics, Goslar (Germany), World Scientific, Singapore

Fermionic and Bosonic Quantum Groups from R-Matrices

HUSSIN, V. and RIDEAU, G., Fermionic and Bosonic Quantum Groups from R-Matrices , 399-402 (1997), , Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics, Goslar Quantum group Symposium at Group 21(Germany), Henron Press, Sofia

Oscillator quantum groups from R-matrix Method

HUSSIN, V., LAUZON, A. and RIDEAU, G., Oscillator quantum groups from R-matrix Method A, 29, 4105-4125 (1996), , J. Phys.

Computations of Lie supersymmetries for Grassmann-valued Differential equations,

AYARI, M.A. and HUSSIN, V., Computations of Lie supersymmetries for Grassmann-valued Differential equations, 2334, (1996), , CRM