Passer au contenu

/ Département de mathématiques et de statistique

Rechercher

 

Murua, Alejandro

Vcard

Professeur titulaire

Faculté des arts et des sciences - Département de mathématiques et de statistique

André-Aisenstadt local 4221

514 343-6987

Courriels

Affiliations

  • Membre - CRM — Centre de recherches mathématiques

Cours donnés

  • STT3260 A - Modèles de survie

Expertises

Mes interêts de recherche principaux se concentrent sur les applications de la statistique et de la probabilité aux problèmes traitant de la bioinformatique, des sciences sociales et de la santé, data mining et machine learning, de l'identification d'objets, et du traitement de signaux.

Encadrement Tout déplier Tout replier

Sélection de modèle d'imputation à partir de modèles bayésiens hiérarchiques linéaires multivariés Thèses et mémoires dirigés / 2009-06
Chagra, Djamila
Abstract
Les logiciels utilisés sont Splus et R.

Approximation de la distribution a posteriori d'un modèle Gamma-Poisson hiérarchique à effets mixtes Thèses et mémoires dirigés / 2011-01
Nembot Simo, Annick Joëlle
Abstract
La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.

Modélisation des bi-grappes et sélection des variables pour des données de grande dimension : application aux données d'expression génétique Thèses et mémoires dirigés / 2012-08
Chekouo Tekougang, Thierry
Abstract
Les simulations ont été implémentées avec le programme Java.

Projets de recherche Tout déplier Tout replier

Brain connectivity-based optimization of non-invasive brain stimulation to improve cognitive symptoms in schizophrenia IRSC/Instituts de recherche en santé du Canada / 2019 - 2026

Bayesian deeplearning prediction with sparse graphs CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2019 - 2025

Investment portfolio design and optimal execution of automated trading strategies: an exploratory research program MITACS Inc. / 2019 - 2019

Gibbs-repulsion and determinantal processes for statistical learning SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements / 2018 - 2020

Uplift models extension for smart marketing. MITACS Inc. / 2017 - 2018

Variable selection for uplift modeling. MITACS Inc. / 2017 - 2017

Centre de recherches mathematiques (crm) FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2015 - 2022

Modele de melange avec noyaux pour la classification des donnees de grande dimension Innovation, Sciences et Développement économique Canada , FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2014 - 2015

Kernel-based non-parametric bayesian clustering models CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2013 - 2019

Innovative chemogenomic tools to improve outcome in acute myeloid leukemia Génome Canada / 2013 - 2017

Innovative chemogenomic tools to improve outcome in in acute myeloid leukemia Génome Québec / 2013 - 2017

Computational resources for research in mathematics and statistics CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2013 - 2015

Publications choisis Tout déplier Tout replier

The penalized biclustering model and related algorithms

Chekouo, Thierry et Murua, Alejandro, The penalized biclustering model and related algorithms 42, 1255-1277 (2015), , Journal of Applied Statistics

The conditional-Potts clustering model

Murua, Alejandro et Wicker, Nicolas, The conditional-Potts clustering model 23, 717--739 (2014), , J. Comput. Graph. Statist.

Kernel-based mixture models for classification

Murua, Alejandro et Wicker, Nicolas, Kernel-based mixture models for classification , (2014), , Computational Statistics

The Gibbs-plaid biclustering model

Chekouo, Thierry, Murua, Alejandro et Raffelsberger, Wolfgang , The Gibbs-plaid biclustering model , (2014), , The Annals of Applied Statistics

The conditional-Potts clustering model

Murua, Alejandro et Wicker, Nicolas, The conditional-Potts clustering model Rapport de recherché CRM 3317, (2011), , Université de Montréal

On Potts model clustering, kernel $K$-means, and density estimation

Murua, Alejandro, Stanberry, Larissa et Stuetzle, Werner, On Potts model clustering, kernel $K$-means, and density estimation 17, 629--658 (2008), , J. Comput. Graph. Statist.

Model based document classification and clustering

Murua, A., Stuetzle, W., Tantrum, J. et Sieberts, S., Model based document classification and clustering 8, 1--24 (2008), , Int. J. Tomogr. Stat.

Country Clustering to Evaluate Global Health Outcomes

Hegyvary, Sue Thomas, Berry, Devon M et Murua, Alejandro, Country Clustering to Evaluate Global Health Outcomes 29, 319-339 (2008), , Journal of Public Health Policy

Functional connectivity mapping using the ferromagnetic Potts spin model

Stanberry, Larissa, Murua, Alejandro et Cordes, Dietmar, Functional connectivity mapping using the ferromagnetic Potts spin model 29, 422-440 (2008), , Human Brain mapping

Probabilistic segmentation and intensity estimation for microarray images

Gotttardo, Raphael, Besag, Julian, Stephens, Matthew et Murua, Alejandro, Probabilistic segmentation and intensity estimation for microarray images 7, 85-99 (2006), , Biostatistics

Mapping Functional Connectivity Using Potts Spin Model. Proceedings of the 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine

Stanberry, Larissa, Murua, Alejandro et Cordes, Dietmar, Mapping Functional Connectivity Using Potts Spin Model. Proceedings of the 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine , 1101 (2006), , ISMRM 2006, Seattle - USA

Resting State Connectivity of Anterior and Posterior Cingulate Corteces Using Potts Spin Model. Proceedings of the 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine

Stanberry, Larissa, Murua, Alejandro et Cordes, Dietmar, Resting State Connectivity of Anterior and Posterior Cingulate Corteces Using Potts Spin Model. Proceedings of the 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine , 1090 (2006), , ISMRM 2006

On Potts model clustering, kernel K-means and density estimation.

Murua, A., Stanberry, L. et Stuetzle, W., On Potts model clustering, kernel K-means and density estimation. Rapport de recherche CRM 3225, (2006), , Université de Montréal

Optimal transformations for prediction in continuous-time stochastic processes: finite past and future

Gidas, Basilis et Murua, Alejandro, Optimal transformations for prediction in continuous-time stochastic processes: finite past and future 131, 479--492 (2005), , Probab. Theory Related Fields

Clustering fMRI time series in the wavelet domain. Proceedings of the 13th Scientific Meeting of the International Society for Magnetic Resonance in Medicine

Stanberry, Larissa; Murua, Alejandro; Nandy, Rajesh et Cordes, Dietmar, Clustering fMRI time series in the wavelet domain. Proceedings of the 13th Scientific Meeting of the International Society for Magnetic Resonance in Medicine , 1604 (2005), , ISMRM 2005, Miami - USA

Hierarchical model-based clustering of large datasets through fractionation and refractionation

Tantrum, Jeremy; Murua, Alejandro et Stuetzle, Werner, Hierarchical model-based clustering of large datasets through fractionation and refractionation 29, 315-326 (2004), , Information Systems

Estimation and consistency for linear functionals of continuous-time processes from finite data set, II: Optimal Transformations for Prediction.

Gidas, Basilis et Murua, Alejandro, Estimation and consistency for linear functionals of continuous-time processes from finite data set, II: Optimal Transformations for Prediction. , (2004), , Department of Statistics, University of Washington,

Assessment and Pruning of Hierarchical Model Based Clustering. The Ninth International Conference on Knowledge Discovery and Data Mining

Tantrum, Jeremy; Murua, Alejandro et Stuetzle, Werner, Assessment and Pruning of Hierarchical Model Based Clustering. The Ninth International Conference on Knowledge Discovery and Data Mining , (2003), , KDD 2003, Washington DC - USA

Upper bounds for error rates associated to linear combination of classifiers

Murua, Alejandro, Upper bounds for error rates associated to linear combination of classifiers 24, 591-602 (2002), , IEEE Transactions on Pattern Analysis and Machine Intelligence

Hierarchical model-based clustering of large datasets through fractionation and refractionation. The Eighth International Conference on Knowledge Discovery and Data Mining

Tantrum, Jeremy; Murua, Alejandro et Stuetzle, Werner, Hierarchical model-based clustering of large datasets through fractionation and refractionation. The Eighth International Conference on Knowledge Discovery and Data Mining , 183-190 (2002), , KDD 2002, Edmonton - Canada

Evaluation of sequential importance sampling for blind deconvolution via a simulation study. Proceedings of the XI European Signal Processing Conference

Ali, Ayesha; Richardson, Thomas; Murua, Alejandro et Roy, Sumit , Evaluation of sequential importance sampling for blind deconvolution via a simulation study. Proceedings of the XI European Signal Processing Conference , 315-318 (2002), , EUSIPCO 2002, Toulouse - France

Model-Based Clustering and Data Transformations for Gene Expression Data

Yeung, Ka Yee; Fraley, Chris; Murua, Alejandro; Raftery, Adrian et Ruzzo, Larry, Model-Based Clustering and Data Transformations for Gene Expression Data 17, 977-987 (2001), , Bioinformatics

Speech recognition using randomized relational decision tree

Amit, Yali et Murua, Alejandro, Speech recognition using randomized relational decision tree 9, 333-341 (2001), , IEEE Transactions on Speech and Audio Processing

On the regularity of spectral densities of continuous-time completely linearly regular processes

Murua, Alejandro, On the regularity of spectral densities of continuous-time completely linearly regular processes 79, 213--227 (1999), , Stochastic Process. Appl.

A 2D extended HMM for speech recognition. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing

Li, J. et Murua, Alejandro, A 2D extended HMM for speech recognition. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing , 349-352 (1999), , ICASSP 1999, Phoenix - USA

Optimal transformations for prediction in continuous time stochastic processes.

Gidas, Basilis et Murua, Alejandro, Optimal transformations for prediction in continuous time stochastic processes. , 167-183 (1998), , I. Karatzas, B. Rajput and M. Taqqu editors

Estimation and consistency for linear functionals of continuous-time processes from a finite data set, I: Linear Predictors.

Gidas, Basilis et Murua, Alejandro, Estimation and consistency for linear functionals of continuous-time processes from a finite data set, I: Linear Predictors. , (1998), , Department of Statistics, University of Chicago

Stop consonants discrimination and clustering using nonlinear transformations and wavelets.

Gidas, Basilis et Murua, Alejandro, Stop consonants discrimination and clustering using nonlinear transformations and wavelets. Springer-Verlag, 13-62 (1996), , Steve E. Levinson and Larry Shepp, editors

Classification and clustering of stop consonants via nonparametric transformations and wavelets. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing

Gidas, Basilis et Murua, Alejandro, Classification and clustering of stop consonants via nonparametric transformations and wavelets. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing , 872-875 (1995), , ICASSP 1995, Detroit - USA

On the number of $2\pi$ periodic solutions for $u''+g(u)=s(1+h(t))$ using the Poincaré-Birkhoff theorem

del Pino, Manuel A., Manàsevich, Raùl F. et Murùa, Alejandro, On the number of $2\pi$ periodic solutions for $u''+g(u)=s(1+h(t))$ using the Poincaré-Birkhoff theorem 95, 240--258 (1992), , J. Differential Equations

Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE

del Pino, Manuel A., Manàsevich, Raùl F. et Murùa, Alejandro E., Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE 18, 79--92 (1992), , Nonlinear Anal.