Passer au contenu

/ Département de mathématiques et de statistique

Je donne

Rechercher

 

Maire, Florian

Vcard

Professeur adjoint

Faculté des arts et des sciences - Département de mathématiques et de statistique

André-Aisenstadt Local 4253

514 343-6111 ext 7977

Courriels

Expertise

En statistique bayésienne, les lois de probabilités qu'il est habituel de rencontrer en pratique sont généralement compliquées: modèles de vraisemblance non linéaires/non gaussiens, constantes incalculables, données manquantes, etc. Parallélement, l'accroissement des puissances de calculs permettent de considérer à présent des modèles paramètriques de (très) grandes dimensions et d'en faire l'apprentissage grâce à un (très) grand nombre de données. De tels scenarios mettent souvent en échec les outils d'inférence statistique classiques tels que les algorithmes du gradient, Expectation Maximisation ou encore les méthodes de Monte Carlo par chaîne de Markov. 

Je m'intéresse aux questions liées à l'approximation de ces algorithmes classiques et en particulier à leur convergence. De ces approximations résultent des algorithmes "bruités" qui n'héritent généralement pas des propriétés agréables que possèdent les algorithmes classiques: estimateur sans biais, normalité asymptotique, taux de convergence optimal, invariance, etc. Comment construire des algorithmes efficaces à la fois d'un point de vue statistique (théorique) et computationel (en pratique, i.e implémentable et viable)? Mais cette question est couplée avec une autre: quelles cadres théoriques peuvent être utilisés/adaptés pour construire ces approximations?

Les domaines d'application qui m'intéressent sont entre autre le traîtement de l'image (modèles à prototypes déformables), les modèles de graphes aléatoires et les modèles de dynamique moléculaire.

Encadrement Tout déplier Tout replier

Efficacité de l'algorithme EM en ligne pour des modèles statistiques complexes dans le contexte des données massives Thèses et mémoires dirigés / 2020-11
Martel, Yannick
Abstract
L’algorithme EM (Dempster et al., 1977) permet de construire une séquence d’estimateurs qui converge vers l’estimateur de vraisemblance maximale pour des modèles à données manquantes pour lesquels l’estimateur du maximum de vraisemblance n’est pas calculable. Cet algorithme est remarquable compte tenu de ses nombreuses applications en apprentissage statistique. Toutefois, il peut avoir un lourd coût computationnel. Les auteurs Cappé et Moulines (2009) ont proposé une version en ligne de cet algorithme pour les modèles appartenant à la famille exponentielle qui permet de faire des gains d’efficacité computationnelle importants en présence de grands jeux de données. Cependant, le calcul de l’espérance a posteriori de la statistique exhaustive, qui est nécessaire dans la version de Cappé et Moulines (2009), est rarement possible pour des modèles complexes et/ou lorsque la dimension des données manquantes est grande. On doit alors la remplacer par un estimateur. Plusieurs questions se présentent naturellement : les résultats de convergence de l’algorithme initial restent-ils valides lorsqu’on remplace l’espérance par un estimateur ? En particulier, que dire de la normalité asymptotique de la séquence des estimateurs ainsi créés, de la variance asymptotique et de la vitesse de convergence ? Comment la variance de l’estimateur de l’espérance se reflète-t-elle sur la variance asymptotique de l’estimateur EM? Peut-on travailler avec des estimateurs de type Monte-Carlo ou MCMC? Peut-on emprunter des outils populaires de réduction de variance comme les variables de contrôle ? Ces questions seront étudiées à l’aide d’exemples de modèles à variables latentes. Les contributions principales de ce mémoire sont une présentation unifiée des algorithmes EM d’approximation stochastique, une illustration de l’impact au niveau de la variance lorsque l’espérance a posteriori est estimée dans les algorithmes EM en ligne et l’introduction d’algorithmes EM en ligne permettant de réduire la variance supplémentaire occasionnée par l’estimation de l’espérance a posteriori.

Étude d'algorithmes de simulation par chaînes de Markov non réversibles Thèses et mémoires dirigés / 2020-10
Huguet, Guillaume
Abstract
Les méthodes de Monte Carlo par chaînes de Markov (MCMC) utilisent généralement des chaînes de Markov réversibles. Jusqu’à récemment, une grande partie de la recherche théorique sur les chaînes de Markov concernait ce type de chaînes, notamment les théorèmes de Peskun (1973) et de Tierney (1998) qui permettent d’ordonner les variances asymptotiques de deux estimateurs issus de chaînes réversibles différentes. Dans ce mémoire nous analysons des algorithmes simulants des chaînes qui ne respectent pas cette condition. Nous parlons alors de chaînes non réversibles. Expérimentalement, ces chaînes produisent souvent des estimateurs avec une variance asymptotique plus faible et/ou une convergence plus rapide. Nous présentons deux algorithmes, soit l’algorithme de marche aléatoire guidée (GRW) par Gustafson (1998) et l’algorithme de discrete bouncy particle sampler (DBPS) par Sherlock et Thiery (2017). Pour ces deux algorithmes, nous comparons expérimentalement la variance asymptotique d’un estimateur avec la variance asymptotique en utilisant l’algorithme de Metropolis-Hastings. Récemment, un cadre théorique a été introduit par Andrieu et Livingstone (2019) pour ordonner les variances asymptotiques d’une certaine classe de chaînes non réversibles. Nous présentons leur analyse de GRW. De plus, nous montrons que le DBPS est inclus dans ce cadre théorique. Nous démontrons que la variance asymptotique d’un estimateur peut théoriquement diminuer en ajoutant des propositions à cet algorithme. Finalement, nous proposons deux modifications au DBPS. Tout au long du mémoire, nous serons intéressés par des chaînes issues de propositions déterministes. Nous montrons comment construire l’algorithme du delayed rejection avec des fonctions déterministes et son équivalent dans le cadre de Andrieu et Livingstone (2019).