Passer au contenu

/ Département de mathématiques et de statistique

Rechercher

 

Fribergh, Alexander

Vcard

Professeur agregé

Faculté des arts et des sciences - Département de mathématiques et de statistique

André-Aisenstadt local 4151

514 343-6709

Courriels

Affiliations

  • Membre - CRM — Centre de recherches mathématiques

Cours donnés

  • MAT6717 A - Probabilités

Expertises

Encadrement Tout déplier Tout replier

Théorème Central Limite pour les marches aléatoires biaisées sur les arbres de Galton-Watson avec feuilles Thèses et mémoires dirigés / 2016-09
Rakotobe, Joss
Abstract
L?objectif en arrière-plan est de montrer que plusieurs modèles de marches aléatoires en milieux aléatoires (MAMA) sont reliés à un modèle-jouet appelé le modèle de piège de Bouchaud. Le domaine des MAMA est très vaste, mais nous nous intéressons particulièrement à une classe de modèle où la marche est réversible et directionnellement transiente. En particulier, nous verrons pourquoi on pense que ces modèles se ressemblent et quel genre de similarités on s?attend à obtenir, une fois qu?on aura présenté le modèle de Bouchaud. Nous verrons aussi quelques techniques de base utilisés de ce domaine, telles que les temps de régénérations. Comme contribution, nous allons démontrer un théorème central limite pour la marche aléatoire ?-biaisée sur un arbre de Galton-Watson.

Projets de recherche Tout déplier Tout replier

Les probabilités a l'interface du physique statistique, l'informatique théorique et l'optimisation FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2018 - 2021

Centre de recherches mathematiques (crm) FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2015 - 2022

Random walks in random environments and traps CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2015 - 2021

Étude des marches aléatoires biaisées sur des clusters de percolations FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2015 - 2019

Publications choisis Tout déplier Tout replier

Scaling limit for the ant in a high-dimensional labyrinth

Gérard Ben Arous, Manuel Cabezas, Alexander Fribergh, Scaling limit for the ant in a high-dimensional labyrinth 72(1) , (2019), , Communications in Pure and Applied Mathematics

Scaling limits for sub-ballistic biased random walks in random conductances

Alexander Fribergh et Daniel Kious, Scaling limits for sub-ballistic biased random walks in random conductances 46(2), 605-686 (2018), , Annals of Probability

Scaling limit for the ant in a simple labyrinth

Gérard Ben Arous, Manuel Cabezas et Alexander Fribergh, Scaling limit for the ant in a simple labyrinth , 94 (2018), , Annals of probability

Biased random walk on the interlacement set

Alexander Fribergh et Serguei Popov, Biased random walk on the interlacement set 54, (2018), , Annales de l'institut Henry Poincaré

Scaling limits for random walks on random critical trees

Ben Arous, Cabezas, Fribergh, Scaling limits for random walks on random critical trees , (2016), , Annales de l'Institut Poincaré

Local trapping for elliptic random walks in random environments in Zd

Alexander Fribergh and Daniel Kious, Local trapping for elliptic random walks in random environments in Zd 165, 795--834 (2016), , Probability Theory and Related Fields

Biased random walks on random graphs

Gérard Ben Arous and Alexander Fribergh, Biased random walks on random graphs , (2015), , AMS volume Saint Petersburg summer School on Probability and Statistical Mechanics edited by S. Smirnov and V. Sidoravicius

Lyons-Pemantle-Peres monotonicity problem for high biases

Ben Arous, Gérard, Fribergh, Alexander et Sidoravicius, Vladas, Lyons-Pemantle-Peres monotonicity problem for high biases 67, 519--530 (2014), , Comm. Pure Appl. Math.

Phase transition for the speed of the biased random walk on the supercritical percolation cluster

Fribergh, Alexander et Hammond, Alan, Phase transition for the speed of the biased random walk on the supercritical percolation cluster 67, 173--245 (2014), , Comm. Pure Appl. Math.

Biased random walk in positive random conductances on $\Bbb Z^d$

Fribergh, Alexander, Biased random walk in positive random conductances on $\Bbb Z^d$ 41, 3910--3972 (2013), , Ann. Probab.

Biased random walk on critical Galton-Watson trees conditioned to survive

Croydon, D. A., Fribergh, A. et Kumagai, T., Biased random walk on critical Galton-Watson trees conditioned to survive 157, 453--507 (2013), , Probab. Theory Related Fields

Biased random walks on Galton-Watson trees with leaves

Ben Arous, Gérard, Fribergh, Alexander, Gantert, Nina et Hammond, Alan, Biased random walks on Galton-Watson trees with leaves 40, 280--338 (2012), , Ann. Probab.

The speed of a biased random walk on a percolation cluster at high density

Fribergh, Alexander, The speed of a biased random walk on a percolation cluster at high density 38, 1717--1782 (2010), , Ann. Probab.

On slowdown and speedup of transient random walks in random environment

Fribergh, Alexander, Gantert, Nina et Popov, Serguei, On slowdown and speedup of transient random walks in random environment 147, 43--88 (2010), , Probab. Theory Related Fields