Bédard, Mylène
- Professeure titulaire
-
Faculté des arts et des sciences - Département de mathématiques et de statistique
André-Aisenstadt Local 4223
Courriels
Affiliations
- Membre Centre de recherches mathématiques
Cours donnés
- STT2105 H - Statistique bayésienne
- STT6700 H - Inférence statistique
Expertise
Projets de recherche Tout déplier Tout replier
Centre de recherches mathématiques (CRM) FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT) / 2022 - 2029
Supplément COVID-19 CRSNG_Markov chain Monte Carlo algorithms and locally informed proposal distributions CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2020 - 2021
Markov chain Monte Carlo algorithms and locally informed proposal distributions CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2019 - 2025
STUDYING, IMPROVING, AND APPLYING MARKOV CHAIN MONTE CARLO METHODS CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2014 - 2021
EFFICIENCY OF MARKOV CHAIN MONTE CARLO METHODS CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG) / 2008 - 2015
EFFICIENCY OF MARKOV CHAIN MONTE CARLO METHODS / 2008 - 2013
Publications choisies Tout déplier Tout replier
On the empirical efficiency of local MCMC algorithms with pools of proposals
Scaling analysis of multiple-try MCMC methods
Simulating from the Heston model: A gamma approximation scheme
Scaling analysis of delayed rejection MCMC methods
On a directionally adjusted Metropolis-Hastings algorithm
Optimal scaling of Metropolis algorithms: heading toward general target distributions
Efficient sampling using Metropolis algorithms: applications of optimal scaling results
Optimal acceptance rates for Metropolis algorithms: moving beyond 0.234
Higher accuracy for Bayesian and frequentist inference: large sample theory for small sample likelihood
Weak convergence of Metropolis algorithms for non-i.i.d. target distributions