Petit, Philippe
- Maitrise
-
Faculté des arts et des sciences - Département de mathématiques et de statistique
André-Aisenstadt
Courriels
Expertise
Encadrement Tout déplier Tout replier
Carquois et relations pour les blocs réguliers des algèbres blob
Thèses et mémoires dirigés / 2024-06
Petit, Philippe
Abstract
Abstract
Les algèbres de Temperley–Lieb de type B, aussi appelées algèbres de Temperley–Lieb à une frontière, sont une famille d’algèbres associatives unitaires de dimension finie généralisant les algèbres de Temperley–Lieb. Elles ont été introduites en 1992 par P.P. Martin et H. Saleur pour la résolution de modèles en mécanique statistique [MS94], mais elles ont rapidement pris de l’importance en théorie de la représentation suite aux travaux de P.P. Martin et D. Woodcock [MW00] [MW03], qui montrent qu’elles s’obtiennent comme quotient d’al- gèbres de Hecke cyclotomiques et qui observent des liens profonds avec la théorie de Lie. Ces quotients sont liés aux algèbres de Khovanov–Lauda–Rouquier (KLR) par les travaux de Brundan et Kleshchev [BK09]; c’est à l’aide des algèbres KLR et de leur formulation diagrammatique que les résultats de ce mémoire seront obtenus. Elles seront maintenant appelées algèbres blob.
Ce mémoire porte sur la théorie de la représentation de certains blocs des algèbres blob. Plus précisément, nous trouvons les carquois et relations décrivant les catégories de modules des blocs réguliers en caractéristique nulle. Les résultats sont obtenus par calcul diagram- matique, en utilisant la base cellulaire construite par Plaza–Ryom-Hansen [PRH14] et les idempotents primitifs de Hazi–Martin–Parker [HMP21].
Structure du mémoire: Le premier chapitre rappelle brièvement les notions algébriques qui seront utilisées. Le deuxième chapitre présente les algèbres blob de façon algébrique et diagrammatique, puis plusieurs résultats connus sur celles-ci. Les troisième et quatrième chapitres contiennent tous les résultats originaux, c’est-à-dire le calcul du carquois et relations pour les blocs réguliers.