Passer au contenu

/ Département de mathématiques et de statistique

Je donne

Rechercher

Huguet, Guillaume

Vcard

Doctorat

Faculté des arts et des sciences - Département de mathématiques et de statistique

André-Aisenstadt Local 4237

Courriels

Expertise

Encadrement Tout déplier Tout replier

Étude d'algorithmes de simulation par chaînes de Markov non réversibles Thèses et mémoires dirigés / 2020-10
Huguet, Guillaume
Abstract
Les méthodes de Monte Carlo par chaînes de Markov (MCMC) utilisent généralement des chaînes de Markov réversibles. Jusqu’à récemment, une grande partie de la recherche théorique sur les chaînes de Markov concernait ce type de chaînes, notamment les théorèmes de Peskun (1973) et de Tierney (1998) qui permettent d’ordonner les variances asymptotiques de deux estimateurs issus de chaînes réversibles différentes. Dans ce mémoire nous analysons des algorithmes simulants des chaînes qui ne respectent pas cette condition. Nous parlons alors de chaînes non réversibles. Expérimentalement, ces chaînes produisent souvent des estimateurs avec une variance asymptotique plus faible et/ou une convergence plus rapide. Nous présentons deux algorithmes, soit l’algorithme de marche aléatoire guidée (GRW) par Gustafson (1998) et l’algorithme de discrete bouncy particle sampler (DBPS) par Sherlock et Thiery (2017). Pour ces deux algorithmes, nous comparons expérimentalement la variance asymptotique d’un estimateur avec la variance asymptotique en utilisant l’algorithme de Metropolis-Hastings. Récemment, un cadre théorique a été introduit par Andrieu et Livingstone (2019) pour ordonner les variances asymptotiques d’une certaine classe de chaînes non réversibles. Nous présentons leur analyse de GRW. De plus, nous montrons que le DBPS est inclus dans ce cadre théorique. Nous démontrons que la variance asymptotique d’un estimateur peut théoriquement diminuer en ajoutant des propositions à cet algorithme. Finalement, nous proposons deux modifications au DBPS. Tout au long du mémoire, nous serons intéressés par des chaînes issues de propositions déterministes. Nous montrons comment construire l’algorithme du delayed rejection avec des fonctions déterministes et son équivalent dans le cadre de Andrieu et Livingstone (2019).