Passer au contenu

/ Département de mathématiques et de statistique

Je donne

Rechercher

Haddad, Tony

Vcard

Doctorat

Faculté des arts et des sciences - Département de mathématiques et de statistique

André-Aisenstadt Local 6253

Courriels

Expertise

Encadrement Tout déplier Tout replier

Prime number races Thèses et mémoires dirigés / 2020-08
Haddad, Tony
Abstract
Sous l’hypothèse de Riemann généralisée et l’hypothèse d’indépendance linéaire, Rubinstein et Sarnak ont prouvé que les valeurs de x > 1 pour lesquelles nous avons plus de nombres premiers de la forme 4n + 3 que de nombres premiers de la forme 4n + 1 en dessous de x ont une densité logarithmique d’environ 99,59%. En général, l’étude de la différence #{p < x : p dans A} − #{p < x : p dans B} pour deux sous-ensembles de nombres premiers A et B s’appelle la course entre les nombres premiers de A et de B. Dans ce mémoire, nous cherchons ultimement à analyser d’un point de vue numérique et statistique la course entre les nombres premiers p tels que 2p + 1 est aussi premier (aussi appelés nombres premiers de Sophie Germain) et les nombres premiers p tels que 2p − 1 est aussi premier. Pour ce faire, nous présentons au préalable l’analyse de Rubinstein et Sarnak pour pouvoir repérer d’où vient le biais dans la course entre les nombres premiers 1 (mod 4) et les nombres premiers 3 (mod 4) et émettons une conjecture sur la distribution des nombres premiers de Sophie Germain.