Passer au contenu

/ Département de mathématiques et de statistique

Je donne

Rechercher

 

Connery-Grigg, Dustin

Vcard

Doctorat

Faculté des arts et des sciences - Département de mathématiques et de statistique

André-Aisenstadt

Courriels

Expertise

Encadrement Tout déplier Tout replier

Fibrés symplectiques et la géométrie des difféomorphismes hamiltoniens Thèses et mémoires dirigés / 2016-08
Connery-Grigg, Dustin
Abstract
Ce mémoire porte sur quelques éléments de la théorie des fibrés symplectiques et leurs usages en étudiant la géométrie hoferienne sur le groupe de difféomorphismes hamiltoniens. En particulier en assumant un certain confort avec les notions de base de la géométrie différentielle et de la topologie algébrique on développe dans le premier chapitre les rudiments nécessaires de la théorie des G-fibrés et, dans la deuxième, tous les faits nécessaires de la topologie symplectique et les difféomorphismes hamiltoniens pour comprendre la théorie de base des fibrés symplectiques, à voir le morphisme de flux et ses liens aux isotopies hamiltoniennes. Le troisième chapitre présente les fondements des fibrés symplectiques se conclu en construisant la forme de couplage dans un langage invariant et en présentant la caractérisation des fibrés symplectiques, dont le groupe de structure réduit au groupe hamiltonien. Le mémoire se termine en présentant quelques applications des fibrés hamiltoniens à la géométrie de Hofer, en particulier une caractérisation de la partie positive de la norme de Hofer d'un lacet hamiltonien en termes du K-aire du fibré au-dessus de la sphère associé et une démonstration de la non-dégénérescence de la norme de Hofer pour des variétés symplectiques fermées.