Zitouni, Foued
- Chargé de cours
-
Faculté des arts et des sciences - Département de mathématiques et de statistique
André-Aisenstadt
Courriels
Cours donnés
- MAT1903 A - Calcul différentiel
Expertise
Encadrement Tout déplier Tout replier
Problèmes de commande optimale stochastique généralisés
Thèses et mémoires dirigés / 2014-11
Zitouni, Foued
Abstract
Abstract
Cette thèse est divisée en deux grands chapitres, dont le premier porte sur des problèmes de commande optimale en dimension un et le deuxième sur des problèmes en dimension deux ou plus. Notons bien que, dans cette thèse, nous avons supposé que le facteur temps n'intervient pas.
Dans le premier chapitre, nous calculons, au début, l'équation de programmation dynamique pour la valeur minimale F de l'espérance mathématique de la fonction de coût considérée. Ensuite, nous utilisons le théorème de Whittle qui est applicable seulement si une condition entre le bruit blanc v et les termes b et q associés à la commande est satisfaite. Sinon, nous procédons autrement. En effet, un changement de variable transforme notre équation en une équation de Riccati en G= F', mais sans conditions initiales. Dans certains cas, à partir de la symétrie des paramètres infinitésimaux et de q, nous pouvons en déduire le point x' où G(x')=0. Si ce n'est pas le cas, nous nous limitons à des bonnes approximations. Cette même démarche est toujours possible si nous sommes dans des situations particulières, par exemple, lorsque nous avons une seule barrière.
Dans le deuxième chapitre, nous traitons les problèmes en dimension deux ou plus. Puisque la condition de Whittle est difficile à satisfaire dans ce cas, nous essayons de généraliser les résultats du premier chapitre. Nous utilisons alors dans quelques exemples la méthode des similitudes, qui permet de transformer le problème en dimension un. Ensuite, nous proposons une nouvelle méthode de résolution. Cette dernière linéarise l'équation de programmation dynamique qui est une équation aux dérivées partielles non linéaire. Il reste à la fin à trouver les conditions initiales pour la nouvelle fonction et aussi à vérifier que les n expressions obtenues pour F sont équivalentes.
Sur l'inégalité de Visser
Thèses et mémoires dirigés / 2009-12
Zitouni, Foued
Abstract
Abstract
Soit p un polynôme d'une variable complexe z. On peut trouver plusieurs inégalités reliant le module maximum de p et une combinaison de ses coefficients. Dans ce mémoire, nous étudierons principalement les preuves connues de l'inégalité de Visser. Nous montrerons aussi quelques généralisations de cette inégalité. Finalement, nous obtiendrons quelques applications de l'inégalité de Visser à l'inégalité de Chebyshev.