Big data are often contaminated by outliers and heavy-tailed errors. To address this challenge, we propose the adaptive Huber regression for robust estimation and inference. The key observation is that the robustification parameter should adapt to sample size, dimension and moments for optimal tradeoff between biases and robustness.
Date : | Mardi le 10 janvier 2017 |
---|---|
Heure : | 14h30 à 15h30 |
Lieu : | Pavillon André-Aisenstadt |
Salle : | 6214 |
Conférencier : | Qiang Sun |