R. G. Owens and
T. N. Phillips. *Computational Rheology*, Imperial College Press/World
Scientific, 2002 and 2005. (ISBN 1-86094-186-9)

A. Lozinski, R. G. Owens and T. N. Phillips, The Langevin and
Fokker-Planck Equations in Polymer Rheology, in Philippe Ciarlet,
Roland Glowinski and J. Xu (eds.) *Numerical Methods for Non-Newtonian Fluids*, *Handbook of
Numerical Analysis XVI**,* pp. 211-303, Elsevier
North-Holland, 2011. (ISBN 978-0-444-53047-9)

A. Robertson, A. Séqueira and R. G. Owens, Chapter 6: Rheological Models for
Blood, in L. Formaggia et al. (eds.), *Cardiovascular Mathematics. Modeling and simulation of the
circulation system**, *pp. 211-241, Springer-Verlag, 2009. (ISBN
978-88-470-1151-9)

F. De l’Isle and R. G. Owens, Superconsistent collocation methods
with applications to convection-dominated
convection-diffusion equations, *J. Comp. **Appl.
Math.* **391** (2021) 113367.

K. Behrouzi, Z. K. Fard, A. Jafari and R. G. Owens, On the modelling and numerical simulation of non-Newtonian blood flow in an aneurysm, submitted for publication (2019).

M. Bennoune, J. Morin-Drouin and R. G. Owens, On the
jump conditions for the immersed interface method. SIAM J. Sci. Comput. **38**(3) (2016) A1280-A1316.

Y. Tawfik and R. G. Owens, A mathematical and numerical investigation of the hemodynamical
origins of oscillations in microvascular networks. *Bull. Math.
Biol.* **75** (2013) 676-707.

R. K. Noutcheuwa and R. G. Owens, A new incompressible smoothed particle hydrodynamics-immersed boundary
method. *Int. J. Numer. Anal. Mod. B*
**3** (2012) 126-167.

R. K. Noutcheuwa and R. G. Owens, A mixed Brownian dynamics - SPH
method for the simulation of flows of suspensions of bead-spring chains in
confined geometries with hydrodynamic interaction. *J. Non-Newtonian Fluid
Mech.,* **166** (2011) 1327-1346.

A. Lozinski and R. G. Owens, Some remarks on the equivalence
of Kirkwood's diffusion equation and the coupled fluctuating polymer and
solvent kinetic equations of Oono and Freed. *J.
Non-Newtonian Fluid Mech.*, **166** (2011) 1297-1303.

A. Iolov, Y. Bourgault, A. S. Kane,
R. G. Owens and A. Fortin, A finite element method for a microstructure-based
model of blood. *Int. J. Numer. Meth. Biomed. Engrg.,* **27** (2011) 1321-1349.

M. A.
Moyers-Gonzalez and R. G. Owens, Mathematical modelling of the cell-depleted
peripheral layer in the steady flow of blood in a tube. *Biorheology* **47**
(2010) 39-71.

P. Degond, A. Lozinski and R. G.
Owens, Kinetic models for dilute solutions of dumbbells in non-homogeneous
flows revisited. *J. Non-Newtonian Fluid Mech.*, **165** (2010)
509-518.

M. A.
Moyers-Gonzalez, R. G. Owens and J. Fang, On the high frequency oscillatory
tube flow of healthy human blood. *J. Non-Newtonian Fluid Mech.*, **163**
(2009) 45-61.

M. A.
Moyers-Gonzalez, R. G. Owens and J. Fang, A non-homogeneous constitutive model
for human blood. Part III: Oscillatory flow. *J. Non-Newtonian Fluid Mech.*,
**155** (2008) 161-173.

M. A. Moyers-Gonzalez and R.
G. Owens, A non-homogeneous constitutive model for human blood. Part II:
Asymptotic solution for large Péclet numbers. *J.
Non-Newtonian Fluid Mech.*, **155** (2008) 146-160.

M. A. Moyers-Gonzalez, R. G.
Owens and J. Fang, A non-homogeneous constitutive model for human blood. Part
I: Model derivation and steady flow. *J. Fluid Mech.*, **617** (2008)
327-354.

É. Brunelle, R. G. Owens and
H. J. van Roessel, Gelation time in the discrete
coagulation-fragmentation equations with a bilinear coagulation kernel, *J.
Phys. A: Math. Theor.*, **40** (2007)
11749-11764.

R. G. Owens, A new
microstructure-based constitutive model for human blood. *J. Non-Newtonian
Fluid Mech.*, **140** (2006) 57-70.

J. Fang, R. G. Owens, L. Tacher and A. Parriaux, A
numerical study of the SPH method for simulating transient viscoelastic free
surface flows, *J. Non-Newtonian Fluid Mech.*, **139** (2006) 68-84.

J. Fang and R. G. Owens,
Numerical simulations of pulsatile blood flow using a new constitutive model, *Biorheology*,
**43** (2006) 637-660.

J. Fang and R. G. Owens, New
constitutive equations derived from a kinetic model for melts and concentrated
solutions of linear polymers. *Rheol**. Acta, ***44**
(2005) 577-590.

M. Sahin
and R. G. Owens, On the effects of viscoelasticity on two-dimensional vortex
dynamics in the cylinder wake. *J. Non-Newtonian Fluid Mech.*, **123**
(2004) 121-139.

A. Lozinski,
R. G. Owens and J. Fang, A Fokker-Planck-based numerical method for modelling
non-homogeneous flows of dilute polymer solutions. *J. Non-Newtonian Fluid
Mech.*, **122** (2004) 322-335.

M. Sahin
and R. G. Owens, An investigation of wall effects up to high blockage ratios on
two-dimensional flow past a confined cylinder. *Physics of Fluids*, **16**
(2004) 1305-1320.

J. Fang, A. Lozinski and R. G. Owens, Towards more realistic kinetic
models for concentrated solutions and melts. *J. Non-Newtonian Fluid Mech.*,
**122** (2004) 128-139.

A. Lozinski
and R. G. Owens, An energy estimate for the Oldroyd B
model: Theory and applications, *J. Non-Newtonian Fluid Mech.*, **112**
(2003) 161-176.

A. Lozinski,
C. Chauvière, J. Fang and R. G. Owens, A
Fokker-Planck simulation of fast flows of concentrated polymer solutions in
complex geometries, *J. Rheol.*, **47**
(2003) 535-561.

M. Sahin
and R. G. Owens , A novel fully-implicit finite volume method applied to the
lid-driven cavity problem. Part II. Linear stability analysis, *Int. J. Numer. Meth. Fluids*, **42** (2003) 79-88.

M. Sahin
and R. G. Owens , A novel fully-implicit finite volume method applied to the
lid-driven cavity problem. Part I. High Reynolds number flow calculations, *Int.
J. Numer. Meth. Fluids*, **42** (2003) 57-77.

R. G. Owens, C. Chauvière and T. N. Phillips, A locally-upwinded
spectral technique (LUST) for viscoelastic flows, *J. Non-Newtonian Fluid
Mech.*, **108** (2002) 49-72.

A. Lozinski,
R. G. Owens and A. Quarteroni, On the simulation of
unsteady flow of an Oldroyd-B fluid by spectral
methods, *J. Sci. Comput.*, **17** (2002)
407-416.

C. Chauvière
and R. G. Owens, A robust spectral element method for simulations of
time-dependent viscoelastic flows, derived from the Brownian configuration
field method, *J. Sci. Comput.* **17** (2002)
209-218.

C. Bernardi,
N. Fiétier and R. G. Owens, An error indicator for
mortar element solutions to the Stokes problem, *IMA J. Num. Anal.*, **21**
(2001) 857-886.

C. Chauvière
and R. G. Owens, A new spectral element method for the reliable computation of
viscoelastic flow . *Comp. Meth. Appl. Mech. Engrg.*,
**190** (2001) 3999-4018.

C. Chauvière
and R. G. Owens, How accurate is your solution? Error indicators for
viscoelastic flow calculations , *J. Non-Newtonian Fluid Mech.*, **95**
(2000) 1-33.

J. Valenciano
and R. G. Owens, An h-p adaptive spectral element method for Stokes flow, *Appl.
Numer. Math.*, **33** (2000) 365-371.

J. Valenciano
and R. G. Owens, A new adaptive modification strategy for numerical solutions
to elliptic boundary value problems, *Appl. Numer.
Math.*, **32** (2000) 305-329.

R. G. Owens, A posteriori
error estimates for spectral element solutions to viscoelastic flow problems, *Comp.
Meth. Appl. Mech. Engrg.*, **164** (1998)
375-395.

R. G. Owens,
Spectral approximations on the triangle, *Proc. Roy. Soc. Lond.
A*, **454** (1998) 857-872.

T. N. Phillips and R. G.
Owens, A mass conserving multidomain spectral collocation method for the Stokes
problem, *Computers and Fluids*, **26** (1997) 825-840.

R. G. Owens and T. N.
Phillips, Steady viscoelastic flow past a sphere using spectral elements, *Int.
J. Num. Meth. Engrg.*, **39** (1996) 1517-1534.

R. G. Owens and T. N.
Phillips, Mass- and momentum conserving spectral methods for Stokes flow, *J.
Comp. Appl. Math.*, **53** (1994) 185-206.

R. G. Owens and T. N.
Phillips, Compatible pseudospectral approximations
for incompressible flow in an undulating tube, *J. Rheol.*,
**37** (1993) 1181-1199.

A. Askar, R. G. Owens and H.
A. Rabitz, Molecular dynamics with Langevin equation
using local harmonics and Chandrasekhar's convolution, *J. Chem. Phys.*, **99**
(1993) 5316-5325.

R. G. Owens and T. N.
Phillips, A spectral domain decomposition method for the planar non-Newtonian
stick-slip problem, *J. Non-Newtonian Fluid Mech.*, **41** (1991)
43-79.

P. Delaunay, A. Lozinski and R. G. Owens, Sparse tensor-product
Fokker-Planck-based methods for nonlinear bead-spring chain models of dilute
polymer solutions,* CRM Proceedings and Lecture Notes ***41*** *(2007)
73-89.

C. Chauvière and R. G. Owens , Wiggle-free spectral element
methods for non-Newtonian flows, *Proceedings of the 16th IMACS World
Congress*, Eds. M. Deville and R. G. Owens, Lausanne, Switzerland (2000).

R. G. Owens and T.
N. Phillips , Decoupled spectral element methods for steady viscoelastic flow
past a sphere, Proceedings of ICOSAHOM.95, *Houston J. Math.*, (1996)
287-294.

R. G. Owens and
T. N. Phillips , A pseudospectral element method for
steady viscoelastic flow around a sphere in a tube, *Proceedings of the
Fourth European Rheology Conference*, Steinkopff
Verlag, Darmstadt, (1994) 359-361.

A. S. Kane, Y. Bourgault, A. Iolov, R. G. Owens and A. Fortin, Computation of blood flows accounting for red-blood cell aggregation/fragmentation, Proceedings of the Seventh International Symposium on Turbulence and Shear Flow Phenomena (TSFP-7), 2011, 6 pages.

A. Iolov, Y. Bourgault, A. Fortin, A. Kane and R. G. Owens, Finite element methods for a mesoscopic constitutive model of blood, 1st International Conference on Mathematical and Computational Biomedical Engineering (CMBE2009), Swansea, UK, June 29-July 1, 2009, 4 pages.

C. Chauvière, J. Fang, A. Lozinski
and R. G. Owens, On the numerical simulation of flows of polymer solutions
using high-order methods based on the Fokker-Planck equation. *Int. J. Mod.
Phys. B.* **17** (2003) 9-14.