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ABSTRACT
This article presents flows computed in non-trivial ge-

ometries while accounting for the contribution of the red cells
to the Cauchy stress using the haemorheological model of
Owens (2006), Owens and Fang (2006). In this model the
local shear viscosity is determined in terms of both the lo-
cal shear rate and the average rouleau size, with the latter be-
ing the solution of an advection-reaction equation. The model
describes the viscoelastic, shear-thinning and hysteretic be-
haviour of flowing blood, and includes non-local effects in the
determination of the blood viscosity and stresses. We present
numerical results for a two dimensional aneurytic channel un-
der both steady and pulsatile flow conditions. We compare
the flows for two sets of physiologically relevant Reynolds
and Deborah numbers. A 3-D flow in a section of a patient-
specific carotid artery is also presented.

1 Introduction
Aneurysm rupture incurs high rates of mortality. A de-

tailed understand of the local haemodynamics is vital to the
accurate prediction of aneurysm ruptures. Among several ap-
proaches, the mathematical investigation of blood flows may
help understand the mechanisms behind the growth and rup-
ture of aneurysms. As stagnant flows are commonly seen in
aneurysms, the variation of blood viscosity must be properly
accounted for. Several rheological models for blood have been
proposed in the literature. Almost all of them express the
blood viscosity as an explicit function of the local shear rate,
whereas much of the blood viscosity that is connected to the
shear rate is, in fact, dependent upon the fragmentation and
aggregation of the red blood cells (RBC) into rouleaux as the
shear stresses on these microstructures change (Owens, 2006).
Since these reversible processes occur over time scales that
may be large compared with those of the shear rate, the change
of viscosity with shear-rate is not instantaneous as would be

predicted by models of the generalised Newtonian or Casson
type, for example. In this paper, we will present numerical
simulations of blood flows in non-trivial geometries while ac-
counting for the contribution of the RBC to the Cauchy stress
using the haemorheological model of Fang and Owens (2006)
and Owens (2006). In this model the local shear viscosity is
determined in terms of both the local shear rate and the av-
erage rouleau size, with the latter being the solution of an
advection-reaction equation. The model describes the vis-
coelastic, shear-thinning and hysteresis behaviour of flowing
blood, and includes non-local effects in the determination of
the blood viscosity and stresses.

The paper is organised as follows: In Section 2, the non-
Newtonian model is briefly introduced and numerical methods
are sketched. In Section 3, we present numerical results in a
two-dimensional aneurytic channel under both steady and pul-
satile flow conditions, and results for steady flows in a three-
dimensional human carotid artery.

2 A MESOSCOPIC MODEL FOR BLOOD
2.1 Governing equations

In a macroscopic description of the mechanical proper-
ties of flowing blood the primary variables of interest are the
velocity, denoted by u, the pressure, denoted by p, and the ex-
tra stress σ , due to viscous and elastic forces. Assuming that
RBC can aggregate to form rouleaux but their density is fixed
in our model, the blood is then incompressible and conserva-
tion of mass reads as

∇ ·u = 0 (1)

The forces acting on the fluid can be decomposed into body
forces, f, such as gravity and those due to the pressure and
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extra stress, p and σ . Balance of linear momentum then gives,

ρ f
Du
Dt

=−∇p+∇ ·σ + f (2)

where ρ f is the fluid density and Du
Dt denotes the material

derivative of u. The macroscopic descriptions of incompress-
ible fluids differ according to the constitutive equation satis-
fied by the extra stress tensor σ . The most fundamental case,
viz. Newtonian fluids, expresses σ as being proportional to
the rate of deformation tensor, γ̇(u) := 1

2 (∇u + ∇uT ). Al-
though the linear relationship between the extra stress tensor
and the rate of deformation tensor is adequate for simple fluids
such as water or air, it fails to be so for microstructured fluids
such as polymer solutions or body fluids. Much can be accom-
plished in the modelling of these complex fluids by choosing
a simple representation of the microstructure and consider-
ing the mechanical effect of these microstructures on the bulk
fluid properties. An elastic dumbbell is an elementary physi-
cal object consisting of two spherical masses connected by a
massless elastic spring. Derivations of the constitutive equa-
tion for the extra-stress tensor due to interactions between en-
sembles of dumbbells and an immersing solvent may be found
in Owens and Phillips (2005), Bird et al. (1987), for exam-
ple. In the original paper of Owens (2006) the author derived
a model where Hookean dumbbells correspond to coin stack-
like columns of RBC called rouleaux. Decomposing the stress
tensor into viscous and elastic parts, σ = 2ηN γ̇ +τ , where ηN
is the plasma viscosity and τ is the contribution of the elastic
dumbbells to the total (Cauchy) stress. Owens (2006) sup-
plied full details of the derivation of the following equation
for τ:

τ + µ

(
∂τ

∂ t
+(u ·∇)τ−∇u · τ− τ ·∇uT

)
= 2ηpγ̇(u) (3)

The parameter µ is the relaxation time and measures the elas-
ticity of the fluid and the coefficient

ηp := N0(kBT +κ)µ (4)

is called the polymeric viscosity, due to the rouleaux. In Eq.
(4), N0 denotes the red cell number density and kBT +κ (hav-
ing dimension J) accounts for bombardments of a rouleau by
the surrounding solvent (kBT ) and other rouleaux (κ). kB is
the Boltzmann constant and T is the (absolute) temperature.
In addition to a shear-thinning relaxation time, the essential
difference between the classical Oldroyd-B model and the
Owens model lies in the fact that the equilibrium length of the
Hookean dumbbells in the haemorheological model change
during the flow as the rouleaux aggregate and fragment. This
leads to a relaxation time µ (and, therefore, a polymeric vis-
cosity) that not only depends on the shear rate but also on the
aggregate size. Thus, in addition to the constitutive equation
(3) for the stress τ due to the dumbbells (rouleaux) one must
also consider the evolution of the dumbbell size.

A representative equilibrium length of a dumbbell is ob-
tained from considering the number of cells in a rouleau. A

complication is immediately seen, however, in that at any
point in time and space there are rouleaux of various sizes
which would have to be represented by dumbbells of various
lengths and tensile properties. The simplification proposed by
Owens (2006) for the computation of the elastic stress was
to assume that the relaxation time µk for aggregates of size
k is well characterised by the relaxation time µ for rouleaux
of average length N̂. Arguments as to why this is a reason-
able simplification are given in Owens (2006). The following
advection-reaction equation for N̂ then applies:

DN̂
Dt

+
1
2

b(γ̇)(N̂−Nst)(N̂ +Nst −1) = 0 (5)

Here b(γ̇) is a fragmentation rate and Nst = Nst(γ̇) is the value
of N̂ given a steady simple shear flow with shear rate γ̇ . In
the model of Owens (2006), the value of N̂ has an effect on
the macroscopic elastic stress, τ in Eq. (3), via the relaxation
time, µ , in the following manner:

µ = µ(N̂, γ̇) =
λH N̂

1+gN̂ N̂λH
(6)

where gN̂ is an aggregation coefficient associated with
rouleaux of N̂ cells, such that

gN̂ N̂ = (1/2)b(γ̇)N̂(N̂−1)+a(γ̇) (7)

a(γ̇) is an aggregation rate for the RBC’s and λH is the re-
laxation time associated with a single blood cell. In partic-
ular we would expect that at infinite shear-rates, all rouleaux
would break up and therefore µ→ λH as γ̇→∞. The assumed
form for the aggregation rate a(γ̇) is a piecewise cubic poly-
nomial in γ̇ . The expression for b(γ̇) may then be determined
from considering a balance in the case of steady simple shear
flow. By matching the current model with a Cross model un-
der the assumption of a steady flow with uniform shear, ηp
and Nst can be expressed in terms of measurable quantities.
See Owens (2006) for a detailed derivation of all these coeffi-
cients.

In this paper we are solving a non-dimensional system of
equations which reads as follows:



Re Du
Dt −2ηs ∇ · γ̇−∇ · τ +∇p = 0

∇ ·u = 0

DN̂
Dt + 1

2 b(γ̇)(N̂−Nst)(N̂ +Nst −1) = 0

τ +De( ∂τ

∂ t +(u ·∇)τ−∇u · τ− τ ·∇uT ) = 2De γ̇(u)
(8)

Here Re is the Reynolds number and De the Deborah number,
respectively defined as ρ f ULDe∞/η∞ and µU/L. The Deb-
orah number De varies with N̂, hence the infinite shear-rate
Deborah number De∞ = λHU/L is useful to characterise the
flow.
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2.2 Boundary conditions
In order to close the system (8), an appropriate set of

boundary conditions (BCs) is required. Consider a domain Ω

with boundary Γ that is split into three disjoint sets, Γi, Γo
and Γw, respectively the inlet, outlet and wall boundaries. We
denote by n the outward unit normal to the boundary Γ. A
main difficulty with this model is to properly set boundary
conditions at the inlet. The commonly used inlet plug flow
gives rise to strong singularities near the walls. Instead, a
fully developed fluid flow is imposed at the inlet boundary,
which fully developed flow can only be obtained by compu-
tations. However, in case of a 2-D (resp. 3-D) flow, we need
to solve a 1-D (resp. 2-D) problem resulting from the system
(8) restricted to the boundary Γi. For this problem defined
on Γi, a constant pressure P0 is imposed at Γi in the princi-
pal direction of the fluid flow, more precisely σn = P0n. The
value of P0 can be chosen in order to impose Umax = 1. For
the velocity, we will further specify no-slip conditions along
the wall Γw. Finally along the outlet Γo, a mixed Dirichlet-
Neumann boundary condition is used for the velocity, i.e. u ‖ n
and nT [−pI+2ηsγ̇]n = 0.

2.3 Finite element discretisation
A finite element method is used for the spatial discreti-

sation of the above system of equations. In order to obtain
a proper mixed finite element formulation, a Discrete Elas-
tic Viscous Split Stress (DEVSS) formulation introduced in
Fortin et al. (2000) is used for the discretisation of the momen-
tum and the continuity equations. To avoid numerical insta-
bilities due to strong convective effects, a streamline upwind
Petrov-Galerkin approach is also adopted in the discretisation
of the microstructure evolution and the constitutive equations
(3rd and 4th equations in system (8). We refer to Iolov et al.
(2011) for a complete description of the numerical methodol-
ogy.

3 NUMERICAL RESULTS
3.1 Blood flows in an aneurytic channel

In this section we discuss results obtained in an aneurytic
channel under both steady and pulsatile flow conditions. This
geometry mimics a blood vessel with an aneurytic formation.
The configuration for this experiment is illustrated in Fig. 1.
As explained in Sec. 2.2, we separate the boundary into three
segments: the inlet, Γi; the walls, Γw, and the outlet, Γo. At
Γi, we impose values for u, τ and N̂. We solve a simplified
version of the system of equations (8) for the case of an in-
finite channel and then apply the 1D solution as an inlet BC.
On Γw we impose no-slip conditions on the velocity, u = 0.
At the outlet, Γo, we impose the natural outflow condition,
−p + 2ηs∂ux/∂x = 0, and no flow in the y-direction, uy = 0.
For our two dimensional calculations, we use the mesh shown
in Fig. 2. It has 5495 triangular elements and 2916 nodes.
Table 1 shows the parameter values that have been used for
this test case.

3.1.1 Steady flow in an aneurytic channel
We first compute a steady flow in the aneurytic channel. The
Reynolds and infinite shear-rate Deborah numbers are set, re-
spectively, to 158 and 0.375. This steady flow will be used

(0,0)

(3,1) (5,1) (10,1)

(4, .8)

r = 1.02
Γi

Γw

Γw

Γo

Figure 1. Flow in an aneurytic channel - geometry and
boundary conditions. See the text for details.

Figure 2. Mesh for the aneurytic channel. Flow variables
will be plotted along the cut shown on the figure.

parameter value comments

η0 0.0326 zero-shear polymeric viscosity, (kgs−1m−1)

η∞ 0.003 infinite-shear polymeric viscosity, (kgs−1m−1)

β 1.0 Cross Model coefficient

m 1 Cross Model exponent

λH 0.005 single cell relaxation time, (s)

ηN 0.001 plasma (Newtonian) viscosity, (kgs−1m−1)

ρ f 1053.6 plasma fluid density, (kgm−3)

Table 1. The model parameters used for the numerical ex-
periment in the channel geometry. A complete description of
the model parameters is given in Iolov et al. (2011).

to initiate pulsatile flow simulations in this geometry. Surface
plots for flow variables can be seen in Fig. 3. Longitudinally
the flow goes through three distinct sections. In the first sec-
tion, between the inlet and the dilation, the flow evolves from
the (viscoelastic) Poiseuille flow of an infinite straight chan-
nel. In the next section where the dilation occurs, the flow is
diverted upwards to follow the geometry. In the third section,
past the dilation, the flow returns to the Poiseuille flow of an
infinite straight channel.

At Re ≈ 158, the flow is well into the laminar regime
and the velocity varies smoothly through the dilation, nearly
symmetrically rising and falling on both sides to follow the
boundary of the geometry. On the other hand the distribution
of the elastic stress through the dilation is rather asymmetric.
We see that the corners of the dilation have a strong effect
on the elastic stress, with τyy increasing near the downstream
corner, while τxx is greatest near the upstream corner.

The behaviour of N̂ is dictated by the local shear-rate
and the flow direction. With the fluid moving upward, the
distribution of N̂ entering the dilation from the pre-dilation
channel also shifts to follow the flow. More interestingly, there
is an area of quite low viscous shear, γ̇ , and flow stagnation
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Figure 3. Steady flow in an aneurytic channel. From top to
bottom, ux, uy, N̂, τxx, τxy, τyy. Re = 158, De∞ = 0.375.

near the upper wall of the dilation and this causes the largest
values of N̂ to appear near that upper wall. An increase in N̂
implies an increase in De so, whereas on one hand we have
low shear-rates and therefore low values for the components
of γ̇ , on the other, the local Deborah number, De, is increased.
In effect this results in a relatively uniform value for τ cross-
sectionally within the stenosis compared to the variation in the
main channel.

The effect of the dilation over the flow is quite short in
space. As may be seen in Fig. 3, the velocity and rouleau size
quickly reassume their profiles as in a straight channel while
τ takes only slightly longer to readjust.

3.1.2 Comparisons of steady flow for var-
ious Deborah numbers Comparisons have been per-
formed for both steady and pulsatile flows in the aneurytic
channel at two different infinite shear-rate Deborah numbers,
namely De∞ = 0.375 and De∞ = 0.175. These Deborah num-
bers correspond, respectively, to Reynolds numbers of 158
and 860. According to the Table I in Iolov et al. (2011), the
case De∞ = 0.175 (respect. De∞ = 0.375) correspond to a flow
at peak systole in an artery with a diameter of 0.02m (respect.
0.004m). The aorta has a diameter of about 0.02m. We see that
the solution at De∞ = 0.375 is more representative of blood
flows in smaller arteries, at least in terms of dimensionless pa-
rameters, than the solution at De∞ = 0.175. Indeed viscoelas-
tic effects will be more prevalent with the higher De∞, as one
expects for blood flows in small arteries. Figure 4 shows plots
of four variables along the cut x = 3.3. The cut line is lo-
cated in the aneurytic regions as indicated on Fig. 2. We only
present results for the steady flows. Increasing De∞ results in

Figure 4. Effect of the Deborah number on the aneurytic
channel flow. The variables are plotted along a cross-sectional
cut at x = 3.3. From top-to-bottom: τxx, τxy, ux and N̂.

smaller rouleaux in the center of the channel and near the wall
in the aneurytic bump, but in larger extra-stresses τxx and τxy
(also true for τyy but not shown here). These extra-stresses can
be up to 3-4 times larger for the higher De∞ with the largest
deviations on the extra-stresses seen near the lower wall and in
the middle of the aneurytic bump. The velocity fields deviate
from each other, but the magnitude of the difference between
velocities is considerably smaller than for the extra-stresses.

3.1.3 Pulsatile blood flow in an aneurytic
channel We now present results obtained in the aneurytic
channel under pulsatile flow conditions. The steady solution
obtained in Sec. 3.1.1 is used as initial condition for the pul-
satile simulations. Computations have been performed for two
test cases, one where De∞ = 0.375 and Re = 158 and the other
with De∞ = 0.175 and Re = 860. For our physical frequency
we have chosen a physiologically reasonable value of 60 heart
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Figure 5. Observation times for pulsatile flows

beats per minutes, corresponding to a non-dimensional fre-
quency of 0.05. A hundred time-steps are computed per pe-
riod over three heart beats.

The points in time during the cycle when we show the
variables are illustrated in Fig. 5. Time I corresponds to peak
deceleration, time II to the minimal inflow velocity (peak di-
astole), time III to peak acceleration and time IV to maximum
inflow velocity (peak systole). Snapshots of the flow variables
during a single cycle over these four equally spaced time in-
tervals can be seen in Figs. 6–8. These are taken from the last
(third) cycle of the simulation. The pressure p is not shown
since it essentially decreases linearly along the length of the
domain. We show u and N̂ only for the flow at De∞ = 0.375.
These variables look very similar for De∞ = 0.175. On the
other hand, comparing Figs. 7 and 8, one notices that the
extra-stresses τ are larger over larger regions for the larger
Deborah number, and this for the whole cycle except maybe
at peak diastole. This is consistent with what was observed in
the steady case.

A few things are notable when looking at the pulsatile
solution. At these low Reynolds numbers, we have a lot of
damping on the fluid and thus there is almost no flow at peak
diastole, time II. At peak systole, time IV , we have a lot of
shear which generates large values for the components of τ .

The solutions for u are quite symmetric in time around
the middle of a cycle. That is, u behaves in the same way
during the deceleration (time I) as it does during the accelera-
tion (time III), as can be seen by comparing respective surface
plots. This is only partially true for the stresses τ with spatial
variations of stresses being milder and more spread out at time
III (following diastole) than time I.

What is interesting is that while u and τ both oscillate
in time due to the pulsatility, N̂ shows little variation over
time. A similar behaviour was observed in the time-dependent
simulations in the original papers (Owens, 2006; Fang and
Owens, 2006), and we see that again here. Our initial con-
ditions correspond to peak systole and correspondingly a low
value for the average rouleau size across the domain. Even
though during each pulse cycle the shear is reduced, the time-
scales inherent in the parameter values for N̂ imply that there
is not enough time in this flow regime for the RBC’s to ag-
gregate into larger rouleaux. Therefore N̂ remains relatively
constant over time despite the relatively large oscillations in u
and γ̇ .

ux N

Figure 6. Horizontal velocity ux (left) and average rouleau
size N̂ (right), at times I - IV (from top to bottom) of the pul-
sating test case. Re = 158, De∞ = 0.375.

τxx τxy

Figure 7. τxx (left) and τxy (right), at times I - IV (from top
to bottom) of the pulsating test case. Re = 158, De∞ = 0.375.

τxx τxy

Figure 8. τxx (left) and τxy (right), at times I - IV (from top
to bottom) of the pulsating test case. Re = 860, De∞ = 0.175.

3.2 Three-dimensional fluid flow in a carotid
bifurcation

We now show a 3-D Newtonian flow in a human carotid
artery bifurcation geometry that will serve as a comparison
test case for the non-Newtonian flow. This test case is in-
spired and uses the geometry from Vétel et al. (2009). The
flow is steady at a Reynolds number of 1000 based on the
inlet diameter and maximal velocity. Figure 9 shows the ge-
ometry and flow features near the main bifurcation between
the left and right carotid artery. One can see that a secondary
flow is induced near the main bifurcation, with strong vor-
ticity especially in the left branch. The comparison with the
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corresponding non-Newtonian flow will be most interesting.

Figure 9. Geometry of the carotid artery bifurcation (top
left), streamlines near the main bifurcation (top right), surface
plot of the vorticity superposed with in-plane streamlines on a
cut plane upstream the main bifurcation (bottom left) and pro-
files of the vertical velocity uz on three horizontal cut planes
upstream and downstream the main bifurcation (bottom right).

4 CONCLUSIONS
This work sets up the framework for the numerical, in

particular finite element, solution of microstructure-based,
Oldroyd-B type models for blood. Following the zero-
dimensional computations in Owens (2006) and the one-
dimensional oscillatory flow simulations in Fang and Owens
(2006), we were able to employ the finite element method
to perform two-dimensional steady and pulsatile flow simula-
tions in a non-trivial geometry (our aneurytic channel). Using
physiologically plausible values for the model’s parameters in
this geometry we made a comparison of flows for two sets
of Reynolds and Deborah numbers, with flow conditions and
sizes corresponding to arteries with a diameter of 0.02m and
0.004m. We managed to compute flows for these Reynolds
and Deborah numbers by replacing the plug flow inlet bound-
ary conditions that were used in Iolov et al. (2011) by bound-
ary conditions obtained from solving a 1-D problem. This
results in a major improvement in the robustness of our finite
element method

As expected, viscoelastic effects were stronger in the
smaller artery. Elastic stresses were still relatively important
in the larger artery, which is about the size of the aorta. Other
non-Newtonian models (e.g. Casson’s model, the Herschel-
Buckley fluid model, the Carreau-Yasuda model, power-law

fluids and the Quemada model) predicted limited differences
with Newtonian flows in similar aneurytic geometries. All
these models deduce shear stresses from local strains, while
RBC rouleaux that control the blood viscoelastic properties
are advected by the flow leading to a non-local viscoelas-
tic response of the blood. However our results indicate that
the combination of viscoelastic, shear-thinning, hysteresis and
non-local effects in the determination of the blood viscosity
and stresses results in a more dominant non-Newtonian be-
haviour of blood. These effects must be accounted for to prop-
erly model the rheological properties of blood. This may call
into question the validity of performing Newtonian flow sim-
ulations even in large arteries such as the aorta in pathological
cases.

Finally a test case for three-dimensional flow comparison
has been identified, with computations of the non-Newtonian
flow well under way.
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