From $A B C$ to L : On singular moduli and Siegel zeros

Christian Táfula

Département de mathématiques
et de statistique (DMS),
Université de Montréal (UdeM)

IUT Summit 2021

Contents

(1) Introduction
(2) Lower bounds for $h(D)$
(3) The Siegel zero connection
(4) Upper bounds for $h(D)$

Contents

(1) Introduction

(2) Lower bounds for $h(D)$

3 The Siegel zero connection

44 Upper bounds for $h(D)$

"No Siegel zeros" for $D<0$

Lower bounds for "class number \times regulator" of $\mathbb{Q}(\sqrt{D})$

Notation

- $D<0$ fundamental discriminant (so $\sqrt{D} \notin \mathbb{R}, D=\operatorname{disc} \mathbb{Q}(\sqrt{D})$);
- $\mathrm{C} \ell(D)=$ class group of $\mathbb{Q}(\sqrt{D})$;
- $h(D)=|\mathrm{C} \ell(D)|$ class number of $\mathbb{Q}(\sqrt{D})$;
- $j=j$-invariant function:

$$
j(\tau):=\frac{\left(1+240 \sum_{n \geq 1}\left(\sum_{d \mid n} d^{3}\right) q^{n}\right)^{3}}{q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}} \quad\left(\Im(\tau)>0, q=e^{2 \pi i \tau}\right)
$$

$$
\begin{aligned}
& j(\tau+1)=j(\tau), \\
& j(-1 / \tau)=j(\tau)
\end{aligned}
$$

$$
\begin{gathered}
j(i)=1728, \\
j\left(e^{2 \pi i / 3}\right)=0, \\
" j(i \infty)=1 \infty " ;
\end{gathered} \quad j(\tau)=\frac{q \text {-expansion of } j:}{q}+744+196884 q+\cdots
$$

Singular moduli ($1 / 2$)

Let $\tau \in \mathfrak{h} \quad(\Im(\tau)>0)$

- CM-point: $\tau \left\lvert\, A \tau^{2}+B \tau+C=0 \quad\binom{A, B, C \in \mathbb{Z}, A>0}{,\operatorname{gcd}(A, B, C)=1$, unique }\right.
- Singular modulus: $j(\tau) \quad(j=j$-invariant, τ a CM-point $)$
$\frac{\text { CM-points }}{\tau \in \mathfrak{h}} \quad \longleftrightarrow \quad \frac{\text { Quadratic forms }}{A x^{2}+B x y+C y^{2}}$
- $\operatorname{disc}(\tau):=B^{2}-4 A C$
- $\tau \sim \tau^{\prime} \Longleftrightarrow(A, B, C) \sim\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$
- $\tau \in \mathscr{F} \Longleftrightarrow(A, B, C)$ reduced

Singular moduli (2/2)

Heegner points $\Lambda_{D} \quad$ Reduced prim. quad. forms of disc. D
$\left\{\begin{array}{c}\text { CM-points } \tau \in \mathscr{F} \\ \operatorname{disc}(\tau)=D\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}(a, b, c):=a x^{2}+b x y+c y^{2} \\ \text { s.t. } b^{2}-4 a c=D, \text { and } \\ -a<b \leq a<c \text { or } 0 \leq b \leq a=c\end{array}\right\}$

$$
\tau_{D}:=\underbrace{\frac{\sqrt{D}}{2}}_{D \equiv 0(4)} \text { or } \underbrace{\frac{-1+\sqrt{D}}{2}}_{D \equiv 1(4)} \leftrightarrow \underbrace{\text { Principal form }}_{\left(1,0,-\frac{D}{4}\right) \text { or }\left(1,1, \frac{1-D}{4}\right)} \mathbb{Z}\left[\tau_{D}\right]=\mathcal{O}_{\mathbb{Q}(\sqrt{D})}
$$

Write $\mathrm{H}_{D}:=$ Hilbert class field of $\mathbb{Q}(\sqrt{D})$.

- $\mathrm{H}_{D}=\mathbb{Q}\left(\sqrt{D}, j\left(\tau_{D}\right)\right) \quad\left(\left[\mathrm{H}_{D}: \mathbb{Q}(\sqrt{D})\right]=\left[\mathbb{Q}\left(j\left(\tau_{D}\right)\right): \mathbb{Q}\right]=h(D)\right)$
- $\left\{j(\tau) \mid \tau \in \Lambda_{D}\right\}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}(\sqrt{D}))$-conjugates of $j\left(\tau_{D}\right)$
- $j\left(\tau_{D}\right)$ is an algebraic integer!

The equation $x^{3}-D y^{2}=1728$

Consider the Diophantine equation $x^{3}-D y^{2}=1728 \quad(=j(i))$.

- Factorization of differences of singular moduli
- Solutions of the type $\left(j\left(\tau_{D}\right), j\left(\tau_{D}\right)-1728\right)=\left(x^{3}, D y^{2}\right)$
- Idea: $A B C \Longrightarrow$ few such solns \Longrightarrow lower bounds for $h(D)$

ABC:

$$
(a+b=c)
$$

$$
\begin{aligned}
& a, b, c \in \mathbb{Z} \text { coprime. } \forall \varepsilon>0, \exists C_{\varepsilon}>0 \text { s.t. } \\
& \quad \max \{|a|,|b|,|c|\}<C_{\varepsilon}\left(\prod_{p \mid a b c} p\right)^{1+\varepsilon}
\end{aligned}
$$

Example (Class number 1 problem)

Gross-Zagier: $h(D)=1 \Longrightarrow x, y \sqrt{|D|} \in \mathbb{Z}$. However, in this case,

$$
\begin{aligned}
\left|j\left(\tau_{D}\right)\right| \leq \max \left\{|x|^{3},|y \sqrt{D}|^{2}, 1728\right\} & \stackrel{\text { abc }}{\leq} C_{\varepsilon} \cdot|x \cdot y \sqrt{D}|^{1+\varepsilon} \\
& \leq C_{\varepsilon} \cdot\left|j\left(\tau_{D}\right)\right|^{\frac{5}{6}(1+\varepsilon)}
\end{aligned}
$$

so there can only be finitely many $D<0$ with $h(D)=1$.

How does $h(D)$ grow?

What do we know?

- $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$ (Heilbronn, 1934)
- List $h(D)$ (small values of $|D|$)
- Estimate $h(D)$ (large values of $|D|$)
- $-D \in\{3,4,7,8,11,19,43,67,163\}$ are the only D s.t. $h(D)=1$
- Solved by Heegner (~ 1952) [based on Weber's work]
- Reworked and clarified by Stark, Birch (1967~9)
- Baker's solution (~ 1970) [based on Baker's theorem]
- $h(D)$ grows roughly like $|D|^{1 / 2} \quad\left(\mathrm{GRH} \Longrightarrow \operatorname{err} \approx(\log \log |D|)^{ \pm 1}\right)$
- Hecke (1917): If $L\left(s, \chi_{D}\right) \neq 0$ near 1 , then $\frac{h(D)}{|D|^{1 / 2}} \gg(\log |D|)^{-1}$
- Landau (1918): $\max \left\{\frac{h\left(D_{1}\right)}{\left|D_{1}\right|^{1 / 2}}, \frac{h\left(D_{2}\right)}{\left|D_{2}\right|^{1 / 2}}\right\} \gg\left(\log \left|D_{1} D_{2}\right|\right)^{-1}$
- Siegel (1935): $\frac{h(D)}{|D|^{1 / 2}} \gg_{\varepsilon}|D|^{-\varepsilon}$ (unconditional but ineffective)

Contents

(1) Introduction
(2) Lower bounds for $h(D)$
(4) Upper bounds for $h(D)$

The Granville-Stark Theorem

Theorem (Granville-Stark, 2000)

Uniform abc-conj. \Longrightarrow
"No Siegel zeros" for
$L\left(s, \chi_{D}\right), D<0$

- Study $x^{3}-y^{2}=1728$
- Uniform $A B C$ for number fields (U-abc)
- U-abc \Longrightarrow lower bounds for $h(D)$
- Lower bounds $h(D) \Longleftrightarrow$ "no Siegel zeros"

A. Granville

H. Stark

The equation $x^{3}-y^{2}=1728$

- Solutions of the type $\left(j\left(\tau_{D}\right), j\left(\tau_{D}\right)-1728\right)=\left(x^{3}, y^{2}\right)$

- Applying the same logic for $x^{3}-y^{2}-1728=0$, we would get:

$$
\begin{aligned}
\log \max \left\{|x|^{3},|y|^{2}\right\} & \leq \log \max \left\{|x|^{3},|y|^{2}, 1728\right\} \\
& \left.\begin{array}{l}
\text { abc } \\
\end{array}\right)(1+\varepsilon) \log -\operatorname{cond}(12|x y|)+\text { error } \\
& \leq \frac{5}{6}(1+\varepsilon) \log \max \left\{|x|^{3},|y|^{2}\right\}+\text { error }
\end{aligned}
$$

How to make this precise?

$$
\log \max \left\{|x|^{3},|y|^{2}\right\}<\left(6+\varepsilon^{\prime}\right) \cdot \text { error }
$$

$A B C$ for number fields (1/2)

Let K / \mathbb{Q} be a NF, $\mathbb{V}(K)$ its places, $\mathbb{V}(K)^{\text {non }} \subseteq \mathbb{V}(K)$ non-arch. places. For a point $P=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}_{K}^{n}$, define:

- (naïve, abs, log) height ht (P)

$$
\frac{1}{[K: \mathbb{Q}]} \sum_{v \in \mathbb{V}(K)} \log \left(\max _{i}\left\{\left\|x_{i}\right\|_{v}\right\}\right)
$$

- (log) conductor $\mathcal{N}_{K}(P)$

$$
\frac{1}{[K: \mathbb{Q}]} \sum_{\substack{v \in \mathbb{V}(K)^{\text {non }} \\ \exists \exists \exists j \leq n \leq \text { s.t. }^{\prime} \\ v\left(x_{i}\right) \neq v\left(x_{j}\right)}} f_{v} \log \left(p_{v}\right)
$$

$$
\downarrow
$$

$$
\left\{\begin{array}{l}
v \sim \mathfrak{p}=\mathfrak{p}_{v} \\
p_{v} \sim \mathfrak{p}_{v} \cap \mathbb{Q} \\
f_{v}:=\left[K_{v}: \mathbb{Q}_{p_{v}}\right]
\end{array}\right.
$$

For $a, b, c \in \mathbb{Z}$ coprime,

- ht $([a: b: c])=\log \max \{|a|,|b|,|c|\}$
- $\mathcal{N}_{\mathbb{Q}}([a: b: c])=\log \left(\prod_{p \mid a b c} p\right)$

$$
\begin{array}{r}
\alpha \text { integral } \Rightarrow \operatorname{ht}(\alpha)=\frac{1}{|\mathcal{A}|} \sum_{\alpha^{*} \in \mathcal{A}} \log ^{+}\left|\alpha^{*}\right| \\
\mathcal{A}=\{\text { conjugates of } \alpha\}
\end{array}
$$

$A B C$ for number fields $(2 / 2)$

$a b c$ for number fields

Fix K / \mathbb{Q} a number field. Then, for every $\varepsilon>0$, there is $\mathcal{C}(K, \varepsilon) \in \mathbb{R}_{+}$such that, $\forall a, b, c \in K \mid a+b+c=0$, we have

$$
\operatorname{ht}([a: b: c])<(1+\varepsilon)\left(\mathcal{N}_{K}([a: b: c])+\log \left(\operatorname{rd}_{K}\right)\right)+\mathcal{C}(K, \varepsilon)
$$

where $\operatorname{rd}_{K}:=\left|\Delta_{K}\right|^{1 /[K: Q]}$ is the root-discriminant of K.

- Granville-Stark's idea: Solve $x^{3}-y^{2}=j(i)$ in diff.s of singular moduli:

$$
\begin{array}{lr}
\left(j\left(\tau_{D}\right), j\left(\tau_{D}\right)-1728\right)=\left(x^{3}, y^{2}\right) & x^{3}-y^{2}=1728 \\
j\left(\tau_{D}\right) \in \mathrm{H}_{D} & \widetilde{\mathrm{H}}_{D}:=\mathrm{H}_{D}(x, y) \\
\left(\left[\tilde{\mathrm{H}}_{D}: \mathrm{H}_{D}\right] \leq 6\right)
\end{array}
$$

Lemma
 $$
\operatorname{rd}_{\tilde{\mathrm{H}}_{D}} \leq 6 \sqrt{|D|}
$$

Proposition (for $0<\varepsilon<\frac{1}{5.01}$)

$$
\operatorname{ht}\left(j\left(\tau_{D}\right)\right)<\frac{3}{1-5 \varepsilon}\left((1+\varepsilon) \log |D|+2 \mathcal{C}\left(\widetilde{\mathrm{H}}_{D}, \varepsilon\right)\right)+O(1)
$$

What do we get?

Thus, for every small $\varepsilon>0$, we have:

$$
\limsup _{D \rightarrow-\infty} \frac{\operatorname{ht}\left(j\left(\tau_{D}\right)\right)}{3 \log |D|} \leq \frac{1+\varepsilon}{1-5 \varepsilon}+\limsup _{D \rightarrow-\infty} \frac{2 \mathcal{C}\left(\widetilde{\mathrm{H}}_{D}, \varepsilon\right)}{(1-5 \varepsilon) \log |D|}
$$

How to make progress?

$$
\left(\begin{array}{cc}
\text { Keep in mind: } & {\left[\widetilde{\mathrm{H}}_{D}: \mathbb{Q}\right] \asymp h(D),} \\
& \log \left(\operatorname{rd}_{\tilde{\mathrm{H}}_{D}}\right)=\log |D|+O(1)
\end{array}\right)
$$

- Uniformity: $\mathcal{C}(K, \varepsilon)=\mathcal{C}(\varepsilon) \quad(\Longrightarrow \lim \sup \leq 1)$
- Weak uniformity: $\mathcal{C}(K, \varepsilon)=o_{\varepsilon}\left(\log \operatorname{rd}_{K}\right) \quad(\Longrightarrow \limsup \leq 1)$
- O-weak uniformity: $\mathcal{C}(K, \varepsilon)=O_{\varepsilon}\left(\log \operatorname{rd}_{K}\right) \quad(\Longrightarrow \limsup <+\infty)$
- [IUTchIV] $A B C:^{\dagger} \mathcal{C}(K, \varepsilon)=O_{\varepsilon}\left([K: \mathbb{Q}]^{4+\varepsilon}\right) \quad$ (not strong enough!)
${ }^{\dagger}$ Ignoring "compactly boundedness" condition.

Lower bounds for $h(D)$

Lemma [G-S]

(weak) uniform $A B C \Longrightarrow \operatorname{ht}\left(j\left(\tau_{D}\right)\right) \leq(3+o(1)) \log |D|$

However,

$$
\begin{array}{rlr}
\operatorname{ht}\left(j\left(\tau_{D}\right)\right) & =\frac{1}{h(D)} \sum_{(a, b, c)} \log ^{+}\left|j\left(\tau_{(a, b, c)}\right)\right| & \begin{array}{c}
a x^{2}+b x y+c y^{2} \\
\text { reduced, } \\
b^{2}-4 a c=D
\end{array} \\
& =\frac{1}{h(D)} \sum_{(a, b, c)} \frac{\pi \sqrt{|D|}}{a}+O(1), & \\
\text { and thus: }
\end{array}
$$

Theorem [G-S]

$$
h(D) \stackrel{\mathrm{U}-a b c}{\geq}\left(\frac{\pi}{3}+o(1)\right) \frac{\sqrt{|D|}}{\log |D|} \sum_{(a, b, c)} \frac{1}{a}
$$

q-expansion!
$j(\tau)=\frac{1}{q}+O(1)$

Contents

(1) Introduction
(2) Lower bounds for $h(D)$
(3) The Siegel zero connection
(4) Upper bounds for $h(D)$

Critical strip

The Dirichlet L-function of a primitive character $\chi(\bmod q)$:

$$
L(s, \chi):=\sum_{n \geq 1} \frac{\chi(n)}{n^{s}}, \quad(\Re(s)>1)
$$

- Euler product $(\Re(s)>1)$:

$$
L(s, \chi)=\prod_{p} \frac{1}{1-\chi(p) p^{-s}}
$$

- Functional equation:
- $L^{*}(s, \chi):=\gamma_{\chi}(s) L(s, \chi)$ is entire
- $L^{*}(s, \chi)=W(\chi) L^{*}(1-s, \bar{\chi})$
(where $|W(\chi)|=1$)
- Dirichlet's PNT:
- $L(1+i t, \chi) \neq 0, \forall t \in \mathbb{R}$.

Classical zero-free regions

[Gronwall 1913, Landau 1918, Titchmarsh 1933] Write $s=\sigma+i t(\sigma=\Re(s), t=\Im(s))$, and let $\chi(\bmod q)$ be a primitive character. There exists $A>0$ such that, in the region

$$
\left\{s \in \mathbb{C} \left\lvert\, \sigma \geq 1-\frac{A}{\log q(|t|+2)}\right.\right\}
$$

the function $L(s, \chi)$ has:

- (χ complex) no zeros;
- (χ real) at most one zero, which is necessarily real and simple - the so-called Siegel zero.

Real primitive Dirichlet characters

$\left\{\begin{array}{c}\text { Real primitive } \\ \text { Dirichlet characters }\end{array}\right\} \longleftrightarrow\left\{\left(\frac{D}{\cdot}\right), \begin{array}{c}D \text { fundamental } \\ \text { discriminant }\end{array}\right\}$

	$\mathbb{Q}(\sqrt{D})$	$\chi_{D}(\bmod \|D\|)$
Factorization	$D=D_{1} \cdots D_{t}$	$\chi_{D}=\chi_{D_{1}} \cdots \chi_{D_{t}}$
Ramification	(p) split	$\chi_{D}(p)=1$
	(p) inert	$\chi_{D}(p)=-1$
	(p) ramified	$\chi_{D}(p)=0$
L-function	Real $/$ Complex	$\chi_{D}(-1)=1 / \chi_{D}(-1)=-1$
$\mathbb{Q}(s)=\sum \mathrm{N}(\mathfrak{a})^{-s}$	$L\left(s, \chi_{D}\right)=\sum \chi_{D}(n) n^{-s}$	

$\underline{\text { Quadratic reciprocity }} \Longleftrightarrow \zeta_{\mathbb{Q}(\sqrt{D})}(s)=\zeta(s) L\left(s, \chi_{D}\right)$

"No Siegel zeros" for $D<0$

Conjecture ("no Siegel zeros" for $D<0$)

There is $\delta>0$ such that $L\left(\beta, \chi_{D}\right) \neq 0$ for $1-\frac{\delta}{\log |D|} \leq \beta<1$.

Equivalently:
(1) $\frac{L^{\prime}}{L}\left(1, \chi_{D}\right) \ll \log |D|$

There are precise relations between $\frac{L^{\prime}}{L}\left(1, \chi_{D}\right), \operatorname{ht}\left(j\left(\tau_{D}\right)\right)$, and $h(D)$:
(2) $\operatorname{ht}\left(j\left(\tau_{D}\right)\right) \ll \log |D|$
(3) $h(D) \gg \frac{\sqrt{|D|}}{\log |D|} \sum_{(a, b, c)} \frac{1}{a}$

$$
\begin{array}{cc}
h(D) \longleftrightarrow \operatorname{ht}\left(j\left(\tau_{D}\right)\right) & \text { (seen) } \\
\operatorname{ht}\left(j\left(\tau_{D}\right)\right) \longleftrightarrow \frac{L^{\prime}}{L}\left(1, \chi_{D}\right) & (\text { Thm } 1) \\
\frac{L^{\prime}}{L}\left(1, \chi_{D}\right) \longleftrightarrow \underline{\text { Siegel zero }} \quad \text { ("tricky") }
\end{array}
$$

(1) \Longleftrightarrow (2) (Theorem 1)

Theorem 1 (T., 2020+)

For fundamental discriminants $D<0$,

$$
\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)=\frac{1}{6} \operatorname{ht}\left(j\left(\tau_{D}\right)\right)-\frac{1}{2} \log |D|+\underbrace{C+o_{D \rightarrow-\infty}(1)}_{\text {Error term }}
$$

where $C=-1.057770 \ldots$
${ }^{\dagger}$ Remark. (Colmez, 1993) Let E_{D} / \mathbb{C} be an ell. curve w/CM by $\mathbb{Z}\left[\tau_{D}\right]$. Then:

$$
-2 \mathrm{ht}_{\mathrm{Fal}}\left(E_{D}\right)=\frac{1}{2} \log |D|+\frac{L^{\prime}}{L}\left(0, \chi_{D}\right)+\log 2 \pi .
$$

- Colmez + Thm $1 \Longrightarrow\left|\operatorname{ht}_{\text {Fal }}\left(E_{D}\right)-\frac{1}{12} \operatorname{ht}\left(j\left(\tau_{D}\right)\right)\right|=2.65537 \ldots+o_{D \rightarrow-\infty}(1)$

	Error term
Colmez (1993)	$O\left(\log\right.$ ht $\left.\left(j\left(\tau_{D}\right)\right)\right)$
G-S (2000)	$O(\log \log \|D\|)$

	Error term
Dimitrov $(2016)^{*}$	$O(1)$
T. $(\mathbf{2 0 2 0}+)$	$-\mathbf{1 . 0 5} \ldots+\mathbf{o}(\mathbf{1})$

* Unpublished.

Graph of $\operatorname{ht}\left(j\left(\tau_{D}\right)\right)$

Graph of $\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)$

$$
C=-1.057770 \ldots
$$

Euler-Kronecker constants

The Dedekind ζ-function of $\mathbb{Q}(\sqrt{D})$:

$$
\zeta_{\mathbb{Q}(\sqrt{D})}(s):=\sum_{\mathfrak{a} \subseteq \mathcal{O}_{\mathbb{Q}(\sqrt{D})}} \frac{1}{\mathrm{~N}(\mathfrak{a})^{s}} \quad\binom{=\zeta(s) L\left(s, \chi_{D}\right)}{=\sum_{\mathscr{A} \in \mathrm{C} \ell(D)} \zeta(s, \mathscr{A})}
$$

where $\zeta(s, \mathscr{A})=\sum_{\substack{\mathfrak{a} \in \mathscr{A} \\ \mathfrak{a} \text { integral }}} \frac{1}{\mathrm{~N}(\mathfrak{a})^{s}}$ for $\mathscr{A} \in \mathrm{C} \ell(D)-$ (partial zeta function)

In general, as $s \rightarrow 1$:

- $\zeta_{K}(s)=\frac{c_{-1}}{s-1}+c_{0}+O(s-1)$
(Ihara, 2006)
Euler-Kronecker:

$$
\gamma_{K}:=c_{0} / c_{-1}
$$

- $\frac{\zeta_{K}^{\prime}}{\zeta_{K}}(s)=-\frac{1}{s-1}+\gamma_{K}+O(s-1)$
- $\zeta_{K}(s, \mathscr{A})=\frac{\varkappa_{K}}{s-1}+\varkappa_{K} \mathfrak{K}(\mathscr{A})+O(s-1)$

$$
\gamma_{K}=\frac{1}{h_{K}} \sum_{\mathscr{A} \in \mathrm{C} \ell_{K}} \mathfrak{K}(\mathscr{A})
$$

$$
\gamma+\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)=\frac{1}{h(D)} \sum_{\mathscr{A} \in \mathrm{C} \ell(D)} \mathfrak{K}(\mathscr{A})
$$

Correspondence for $D<0$ (Ideals-Forms-Points)

Partial zeta function
$\underline{\text { Epstein zeta function }}$
real-analytic Eisenstein series

$$
\begin{array}{ccccc}
\zeta(s, \mathscr{A}) & \leftrightarrow & Z_{[(a, b, c)]}(s) & \leftrightarrow & E([\tau], s) \\
\sum_{\substack{\mathfrak{a} \subseteq \mathscr{A} \\
\mathfrak{a} \text { integral }}} \frac{1}{\mathrm{~N}(\mathfrak{a})^{s}} & \sum_{\substack{(x, y) \in \mathbb{Z}^{2} \\
(x, y) \neq(0,0)}} \frac{1}{\left(a x^{2}+b x y+c y^{2}\right)^{s}} & \sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\
(m, n) \neq 0}} \frac{\Im(\tau)^{s}}{|m \tau+n|^{2 s}}
\end{array}
$$

Kronecker limits for $\mathbb{Q}(\sqrt{D})(D<0)$

$\zeta(s, \mathscr{A})=\frac{1}{w_{D}}\left(\frac{2}{\sqrt{|D|}}\right)^{s} E\left(\tau_{\mathscr{A}}, s\right)$

$$
\mathscr{A} \leftrightarrow \underset{(a, b, c)}{\text { reduced }} \leftrightarrow \tau_{\mathscr{A}}=\frac{-b+\sqrt{D}}{2 a}
$$

- For fixed $\tau \in \mathfrak{h}$, the Laurent expansion of E at $s=1$ is:

$$
E(\tau, s)=\frac{\pi}{s-1}+\pi\left(\frac{\pi}{3} \Im(\tau)-\log \Im(\tau)+\mathcal{U}(\tau)\right)+2 \pi(\gamma-\log 2)+O(s-1)
$$

where:

$$
\mathcal{U}(\tau):=4 \sum_{n \geq 1}\left(\sum_{d \mid n} \frac{1}{d}\right) \frac{\cos (2 \pi n \Re(\tau))}{e^{2 \pi n \Im(\tau)}} \quad\left(=-2 \log \left(|\eta(\tau)|^{2}\right)-\frac{\pi}{3} \Im(\tau)\right)
$$

Kronecker's (first) limit formula

$$
\mathfrak{K}(\mathscr{A})=\underbrace{\frac{\pi}{3} \Im\left(\tau_{\mathscr{A}}\right)-\log \Im\left(\tau_{\mathscr{A}}\right)+\mathcal{U}\left(\tau_{\mathscr{A}}\right)}_{\mathscr{A} \text {-dependent term }} \underbrace{-\frac{1}{2} \log |D|}_{D \text {-dependent }} \underbrace{+2 \gamma-\log 2}_{\text {constant term }}
$$

Duke's equidistribution theorem

Theorem (Duke, 1988)

$\Lambda_{D}=\left\{\tau_{\mathscr{A}} \mid \mathscr{A} \in \mathrm{C} \ell(D)\right\}$ is equidistributed in \mathscr{F}.
If $f: \mathscr{F} \rightarrow \mathbb{C}$ is Riemann-integrable, then:

$$
\lim _{D \rightarrow-\infty} \frac{1}{h(D)} \sum_{\mathscr{A} \in \mathrm{C} \ell(D)} f\left(\tau_{\mathscr{A}}\right)=\int_{\mathscr{F}} f(z) \mathrm{d} \mu
$$

$$
\begin{aligned}
z & =x+i y \\
\mathrm{~d} \mu & =\frac{3}{\pi} \frac{\mathrm{~d} x \mathrm{~d} y}{y^{2}}
\end{aligned}
$$

W. Duke

Proof of Theorem 1

$\underline{\mathrm{KLF}}: \quad \mathfrak{K}(\mathscr{A})=\frac{\pi}{3} \Im\left(\tau_{\mathscr{A}}\right)-\log \Im\left(\tau_{\mathscr{A}}\right)+\mathcal{U}\left(\tau_{\mathscr{A}}\right)-\frac{1}{2} \log |D|+(2 \gamma-\log 2)$

- $\int_{\mathscr{F}} \mathcal{U}(z) \mathrm{d} \mu=0.000151 \ldots$
- $\int_{\mathscr{F}} \log (y) \mathrm{d} \mu=0.952984 \ldots$

$$
\frac{1}{h(D)} \sum_{\mathscr{A} \in \mathrm{C} \mathrm{\ell}(D)} \log \Im\left(\tau_{\mathscr{A}}\right)
$$

is hard without Duke's theorem!

- $\int_{\mathscr{F}}\left(\log ^{+}|j(z)|-2 \pi y\right) \mathrm{d} \mu=-0.068692 \ldots$
\Downarrow (by Duke's theorem)

$$
\gamma_{\mathbb{Q}(\sqrt{D})}=\frac{1}{6}\left(\frac{1}{h(D)} \sum_{\mathscr{A} \in \mathrm{C} \ell(D)} \log ^{+}\left|j\left(\tau_{\mathscr{A}}\right)\right|\right)-\frac{1}{2} \log |D|+C^{\prime}+o(1)
$$

\Downarrow

$$
\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)=\frac{1}{6} \operatorname{ht}\left(j\left(\tau_{D}\right)\right)-\frac{1}{2} \log |D|+C+o(1)
$$

Contents

(1) Introduction
(2) Lower bounds for $h(D)$
(3) The Siegel zero connection

44 Upper bounds for $h(D)$

Main theorem

Theorem $2(\mathrm{~T} ., 2020+)^{\dagger}$

$$
\text { (weak) uniform abc } \Longrightarrow \limsup _{D \rightarrow-\infty} \frac{\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)}{\log |D|}=0
$$

- Algebraic: $\limsup _{D \rightarrow-\infty} \frac{\mathrm{ht}\left(j\left(\tau_{D}\right)\right)}{3 \log |D|} \stackrel{\mathrm{U}-\text {-abc }}{\leq} 1{ }^{\dagger}$ (Granville-Stark, 2000)
- Analytic: $\limsup _{D \rightarrow-\infty} \frac{\operatorname{ht}\left(j\left(\tau_{D}\right)\right)}{3 \log |D|} \geq 1 \quad$ (T., 2020+) [unconditional!]

Main corollary:

$$
\begin{aligned}
& \text { weak U-abc } \\
& + \text { Prop } 1 \quad \rightarrow \\
& \max \left\{\beta \in \mathbb{R} \mid L\left(\beta, \chi_{D}\right)=0\right\}<1-\frac{\sqrt{5} \varphi+o(1)}{\log |D|}
\end{aligned}
$$

The summation $\sum_{\varrho(\chi)} \frac{1}{\varrho}$

Let $D<0$ be a fundamental discriminant.

- Classical formula (Functional Eq. + Hadamard product)

$$
\frac{L^{\prime}}{L}\left(s, \chi_{D}\right)=\left(\sum_{\varrho\left(\chi_{D}\right)} \frac{1}{s-\varrho}\right)-\frac{1}{2} \log \left(\frac{|D|}{\pi}\right)-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{s+1}{2}\right)
$$

- By the reflection formula:

$$
L(\varrho, \chi)=0 \Longrightarrow\left\{\begin{array}{l}
\varrho, 1-\bar{\varrho} \text { zeros of } L(s, \chi) \\
\varrho, 1-\varrho \text { zeros of } L(s, \bar{\chi})
\end{array}\right.
$$

- Hence:

$$
\sum_{\varrho\left(\chi_{D}\right)} \frac{1}{\varrho}=\frac{1}{2} \log |D|+\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)-\frac{1}{2}(\gamma+\log \pi)
$$

Pairing-up zeros (1/2)

In general, writing ($\varrho \in$ critical strip, $\varepsilon>0$):

$$
\Pi_{\varepsilon}(\varrho):=\frac{1}{\varrho+\varepsilon}+\frac{1}{\bar{\varrho}+\varepsilon}+\frac{1}{1-\varrho+\varepsilon}+\frac{1}{1-\bar{\varrho}+\varepsilon} \quad \text { (pairing-up) }
$$

we get:

$$
\sum_{\varrho\left(\chi_{D}\right)} \frac{\Pi_{\sigma-1}(\varrho)}{4}=\frac{1}{2} \log |D|+\frac{L^{\prime}}{L}\left(\sigma, \chi_{D}\right)-\frac{1}{2}\left(-\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{\sigma+1}{2}\right)+\log \pi\right)
$$

- Goal: Estimate Π_{0} in the critical strip
- Idea: Perturb ε in Π_{ε}

Pairing-up zeros $(2 / 2)$

Lemma 1 (The pairing-up lemma)

i For every $s \in \mathfrak{S}$, we have:

$$
\Pi_{0}(s)>\frac{\Pi_{\varphi-1}(s)}{2 \varphi-1} \quad\left(w / \varphi=\frac{1+\sqrt{5}}{2}\right)
$$

ii Take $0<\varepsilon<1, M \geq 2$, and consider

$$
\mathcal{B}_{M}:=\left\{s \in \mathfrak{S}\left|\sigma>1-\frac{1}{M},|t|<\frac{1}{\sqrt{M}}\right\}\right.
$$

Then, in $\mathfrak{S} \backslash\left(\mathcal{B}_{M} \cup\left(1-\mathcal{B}_{M}\right)\right)$, we have:

$$
\left|\Pi_{0}(s)-\Pi_{\varepsilon}(s)\right|<5 M \varepsilon \Pi_{\varepsilon}(s)
$$

Proof of Main Corollary

Proposition 1

For any non-trivial zero ϱ of $L\left(s, \chi_{D}\right)$, we have:

$$
\Re\left(\frac{1}{1-\varrho}\right)<\left(1-\frac{1}{\sqrt{5}}\right) \frac{1}{2} \log |D|+\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)+(\sqrt{5} \varphi-1)
$$

 a zero of $L\left(s, \chi_{D}\right)$, then

$$
\frac{1}{1-\beta}<\left(\left(1-\frac{1}{\sqrt{5}}\right) \frac{1}{2}+o(1)\right) \log |D| .
$$

- Since $\left(\left(1-\frac{1}{\sqrt{5}}\right) \frac{1}{2}\right)^{-1}=\sqrt{5} \varphi$, rearranging yields $\beta<1-\frac{\sqrt{5} \varphi+o(1)}{\log |D|}$.

Isolating the Siegel zero (1/2)

Using the second pairing-up lemma:

Proposition 2 (T., 2020+)

Suppose that for $\chi(\bmod q)$ primitive, $L(s, \chi)$ has no zeros (apart from possible Siegel zeros $\beta=\beta_{\chi}$) in the region

$$
\left\{s \in \mathbb{C}\left|\sigma \geq 1-\frac{1}{f(q)},|t| \leq \frac{1}{\sqrt{f(q)}}\right\}\right.
$$

for some $f: \mathbb{Z}_{\geq 2} \rightarrow \mathbb{R}$ with $2 \leq f(q) \ll \log q$. Then:

$$
\Re\left(\frac{L^{\prime}}{L}(1, \chi)\right)=\frac{1}{1-\beta}+O(\sqrt{f(q) \log q})
$$

- Classical ZFR: $f(q)=O(\log q)$.

$$
\text { "no Siegel zeros" } \Longleftrightarrow \frac{L^{\prime}}{L}\left(1, \chi_{D}\right) \ll \log |D|
$$

Isolating the Siegel zero (2/2)

An integer q is k-smooth if all its prime factors are $\leq k$.

Chang's zero-free regions (2014)

For $\chi(\bmod q)$ primitive, $L(s, \chi)$ has no zeros (apart from possible Siegel zeros) in the region

$$
\left\{s \in \mathbb{C}\left|\sigma \geq 1-\frac{1}{f(q)},|t| \leq 1\right\}\right.
$$

where $f: \mathbb{Z}_{\geq 2} \rightarrow \mathbb{R}$ satisfies:

$$
f(q)=o(\log q) \text { for } q^{o(1)} \text {-smooth moduli }
$$

M.-C. Chang

- Chang's ZFR + Proposition 2:

$$
\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)=\frac{1}{1-\beta_{D}}+O(\sqrt{f(|D|) \log |D|}),
$$

where $\beta_{D}:=\max \left\{\beta \in \mathbb{R} \mid L\left(\beta, \chi_{D}\right)=0\right\}$.

Proof of Main Theorem

$$
\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)=\frac{1}{1-\beta_{D}}+O(\sqrt{f(|D|) \log |D|})
$$

- Since $\frac{1}{1-\beta_{D}}>0$, and $\sqrt{f(|D|) \log |D|}=o(\log |D|)$ for $|D|^{o(1)}{ }_{-}$smooth fundamental discriminants, it follows that

$$
\limsup _{\substack{D \rightarrow-\infty \\|D|^{0(1)}-\text { smooth }}} \frac{\frac{L^{\prime}}{L}\left(1, \chi_{D}\right)}{\log |D|} \geq 0 .
$$

Corollary (strong "no Siegel zeros")

Assume weak uniform $a b c$. For any $A>0$, as $D \rightarrow-\infty$ through $|D|^{o(1)}$-smooth discriminants, all but finitely many D satisfy

$$
\max \left\{\beta \in \mathbb{R} \mid L\left(\beta, \chi_{D}\right)\right\}<1-\frac{A}{\log |D|}
$$

Upper bounds for $h(D)$

For fundamental discriminants $D<0$ we have:

$$
\begin{gathered}
\frac{3}{\sqrt{5}} \log |D|+O(1) \leq \operatorname{ht}\left(j\left(\tau_{D}\right)\right) \stackrel{*}{\leq}(1+o(1)) 3 \log |D| \\
(1+o(1)) \frac{\pi}{3} \frac{\sqrt{|D|}}{\log |D|} \sum_{(a, b, c)} \frac{1}{a} \stackrel{*}{\leq} h(D) \leq\left(\sqrt{5}+O\left(\frac{1}{\log |D|}\right)\right) \frac{\pi}{3} \frac{\sqrt{|D|}}{\log |D|} \sum_{(a, b, c)} \frac{1}{a}
\end{gathered}
$$

where:

- starred ineq.s " ${ }^{*}$ " are conditional on the weak uniform $A B C$.
- if D is $|D|^{o(1)}$-smooth, then starred ineq.s become (asymptotic) equalities.
- GRH \Longrightarrow asymptotic starred equalities for all D, with error term a factor of $O\left(\frac{\log \log |D|}{\log |D|}\right)$. (E.g., ht $\left(j\left(\tau_{D}\right)\right)=3 \log |D|+O(\log \log |D|)$ under GRH $)$.

$$
\begin{aligned}
& \text { ありがとう } \\
& \text { ございました }
\end{aligned}
$$

References

A. Granville and H. M. Stark,

ABC implies no "Siegel zeros" for L-functions of characters with negative discriminant
Invent. Math. 139 (2000), 509-523.
C. Táfula,

On Landau-Siegel zeros and heights of singular moduli To appear in Acta Arithmetica. Preprint [arXiv:1911.07215]

