Hints for exercises in chapter 6

Exercise 6.1.2. Study where lines of rational slope, going through the point $(2,1)$, hit the curve again.
Exercise 6.1.5. Write down an equation that identifies when three given squares are in arithmetic progression.
Exercise 6.3.1(a). By (6.1.1) the area is $g^{2} r s\left(r^{2}-s^{2}\right)$ where $r>s \geq 1$ and $(r, s)=1$. If this is a square, then each of r, s, and $r^{2}-s^{2}$ must be squares; call them x^{2}, y^{2}, and z^{2}, respectively, so that $x^{4}-y^{4}=z^{2}$, which contradicts Theorem 6.2,
(c) Consider a right-angled triangle with sides $x^{2}, 2 y^{2}, z$.

Exercise 6.5.3. Here b is the hypotenuse, and c is the area. Further hint: We need $b^{2}-4 c$ and $b^{2}+4 c$ to be integer squares, say, u^{2} and v^{2}, so that $4 c=$ $b^{2}-u^{2}=v^{2}-b^{2}$. Therefore $2 b^{2}=u^{2}+v^{2}$, so u, v have the same parity and therefore $\left(\frac{u+v}{2}\right)^{2}+\left(\frac{u-v}{2}\right)^{2}=b^{2}$. This is our Pythagorean triangle, which has area $\frac{1}{2} \cdot \frac{u+v}{2} \cdot \frac{v-u}{2}=\frac{v^{2}-b^{2}+b^{2}-u^{2}}{8}=c$.
Exercise 6.5.6. Let $\alpha=p / q$ with $(p, q)=1$ so that $\alpha=(a \alpha+b) / \alpha=(a p+b q) / p$. Now $(p, q)=1$ so comparing denominators we must have $q=1$, and p divides $a p+b q$, so that p divides $b q$, and therefore b.
Exercise 6.5.7. By 6.1.1 the perimeter of such a triangle has length $2 g r s+g\left(r^{2}-\right.$ $\left.s^{2}\right)+g\left(r^{2}+s^{2}\right)=2 g r(r+s)$ where $r>s>0$. Therefore n has divisors r and $r+s$, where $r<r+s<2 r$. On the other hand if n has divisors d_{1}, d_{2} for which $d_{1}<d_{2}<2 d_{1}$, then we may assume they are coprime, by dividing through by any common factor. Therefore $d_{1} d_{2}$ divides n and so we can let $r=d_{1}, s=d_{2}-d_{1}$, and $g=n / d_{1} d_{2}$.
Exercise 6.5.9. Prove that if $n \geq 13$, then $(n+1)^{2}+128<2 n^{2}$. Then proceed by induction on n for $m \in\left[n^{2}+129,2 n^{2}\right)$.
Exercise 6.5.10 What values can cubes take mod 9 ?
Exercise 6.8.1. By simple geometry things must look like the following diagram.

Figure. A circle inscribed inside a right-angled triangle.

If $A=(0,0)$, then $B C$ is the line $b y+c x=b c$. The point $P=(a r+c r, b r+a r)$ lies on this line, and so $b c=r(b(b+a)+c(a+c))=r\left(b^{2}+a b+c^{2}+a c\right)=a r(a+b+c)$. Therefore the radius of the circle is

$$
\text { ar }=\frac{b c}{a+b+c}=\frac{b c(b+c-a)}{(b+c+a)(b+c-a)}=\frac{b c(b+c-a)}{b^{2}+c^{2}-a^{2}+2 b c}=\frac{b+c-a}{2} .
$$

Exercise 6.10.1. First prove that $(n+i)(n+j) \neq(n+I)(n+J)$ for $k \geq I, J, i, j \geq$ 1 unless $\{I, J\}=\{i, j\}$: Suppose that $(n+i)(n+j)=(n+I)(n+J)$ so that $(i+j-I-J) n=I J-i j$. If $I=J=k$ or $I=J=1$, then evidently $i=j=I=J$. Therefore $k(k-1) \geq I J \geq 2$, and similarly $i j$, so that $I J-i j \equiv 0(\bmod n)$ and $n>k^{2}-k>|I J-i j|$. Therefore $I J=i j$ and so $I+J=i+j$, which implies that $\{I, J\}=\{i, j\}$. Now if $a_{I} a_{J}=a_{i} a_{j}$ with $\{I, J\} \neq\{i, j\}$, we may suppose that $(n+I)(n+J)>(n+i)(n+j)$. Therefore

$$
\begin{aligned}
(n+I)(n+J)-(n+i)(n+j) & =a_{i} a_{j}\left(\left(m_{I} m_{J}\right)^{\ell}-\left(m_{i} m_{j}\right)^{\ell}\right) \\
& \geq a_{i} a_{j}\left(\left(m_{i} m_{j}+1\right)^{\ell}-\left(m_{i} m_{j}\right)^{\ell}\right)>\ell a_{i} m_{i}^{\ell-1} a_{j} m_{j}^{\ell-1} \\
& >\ell((n+i)(n+j))^{1-1 / \ell}>3 n^{4 / 3}>3 n(k-1)
\end{aligned}
$$

as $n>k^{\ell}-k>(k-1)^{3}$. Therefore

$$
3 n(k-1)<(n+I)(n+J)-(n+i)(n+j)=(I+J-i-j) n+(I J-i j) \leq(k-1)(2 n+k+1)
$$

which is a contradiction.

