Hints for exercises in chapter 16

Exercise 16.2.1. Assume $(a b, p)=1$; let d be the order of $p(\bmod b)$. Let $A=$ $a \cdot\left(p^{d}-1\right) / b$, and then $C=p^{d}-1-A$. Write $C\left(\bmod p^{d}\right)$ in base p as $c_{0}+$ $c_{1} p+\cdots+c_{d-1} p^{d-1}$. Then $a / b=1+\sum_{j \geq 0} c_{j} p^{j}$ where $c_{j}=c_{k}$ when k is the least non-negative residue of $j(\bmod d)$.
Exercise 16.6.5.b). Use the identity $A B-1=(A-1)+A(B-1)$.
Exercise 16.7.2 (a). Differentiate this expression.

