
Hints for exercises 135

Hints for exercises in chapter 12

Exercise 12.1.3. Suppose that d is a fundamental discriminant and [a, b, c] is an
imprimitive form of discriminant d. If h|(a, b, c), then h2|d, so that h = 2. But
then D = d/h2 ⌘ 0 or 1 (mod 4), a contradiction. Now suppose that d is not a
fundamental discriminant. Then there exists a prime p such that d = p2D, where
D ⌘ 0 or 1 (mod 4). There is always a form g of discriminant D and so pg is an
imprimitive form of discriminant d.

Exercise 12.1.4(c). Study the right-hand side of (12.1.2).

Exercise 12.1.5. Take determinants of both sides.

Exercise 12.1.6. First note that b ⌘ d mod 2, and that if b = 2k + � with � the
least residue of d (mod 2), then the change of variable x ! x � ky shows that
[1, b, c] ⇠ [1, �, A], the principal form. The value of A must be (��d)/4, so that the
discriminant is d = b2 � 4c.

Exercise 12.4.1. One example is d = �171. We begin by noting that |b|  a p
171/3 =

p
57 < 8 and b is odd. If b = ±1, then ac = (1+171)/4 = 43 with a  c

so that a = 1. If b = ±3, then ac = (9 + 171)/4 = 45 with a  c so that a = 1, 3, 5
and 1 < |b|. If b = ±5, then ac = (25+171)/4 = 49 with a  c so that a = 1, 7 and
1 < |b|. If b = ±7, then ac = (49 + 171)/4 = 55 with a  c so that a = 1, 5 which
are both < |b|, so we are left with [1, 1, 43], [3, 3, 15], [5, 3, 9], [5,�3, 9], [7, 5, 7], and
[3, 3, 15] which is imprimitive.

Exercise 12.4.2. These are the smallest negative fundamental discriminants of class
numbers 1 to 8:
For d = �3 we have [1, 1, 1]. For d = �15 we have [1, 1, 4], [2, 1, 2].
For d = �23 we have [1, 1, 6], [2,±1, 3].
For d = �39 we have [1, 1, 10], [2,±1, 5], [3, 3, 4].
For d = �47 we have [1, 1, 12], [2,±1, 6], [3,±1, 4].
For d = �87 we have [1, 1, 22], [2,±1, 11], [3, 3, 8], [4,±3, 6].
For d = �71 we have [1, 1, 18], [2,±1, 9], [3,±1, 6], [4,±3, 5].
For d = �95 we have [1, 1, 24], [2,±1, 12], [3,±1, 8], [4,±1, 6], [5, 5, 6].

Exercise 12.4.3. These are the smallest even negative fundamental discriminants of
class numbers 1 to 6: For d = �4 we have [1, 0, 1]; for d = �20 we have [1, 0, 5],
[2, 2, 3]; for d = �56 we have [1, 0, 14], [2, 0, 7], [3,±2, 5]; for d = �104 we have
[1, 0, 26], [2, 0, 13], [3,±2, 9], [5,±4, 6].

Exercise 12.5.3. Use Rabinowicz’s criterion, and quadratic reciprocity.

Exercise 12.6.1. Prove and use the inequality am2+bmn+cn2 � am2�|b|max{|m|, |n|}2+
cn2.

Exercise 12.6.2(b). Use the smallest values properly represented by each form.

Exercise 12.6.5(c). Use exercise 12.6.2(e).

Exercise 12.6.7(c). Given a solution B, let C = (B2 � d)/4A and then [A,B,C]
represents A properly (by (1, 0)). Find reduced f ⇠ [A,B,C] and use the transfor-
mation matrix to find the representation as in (b).

Exercise 12.8.1. Prove this one prime factor of A at a time and then use the Chinese
Remainder Theorem. For each prime p, try f(1, 0), f(0, 1), and then f(1, 1).
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Exercise 12.8.2 If f = [a, r, u], then the transformation x ! x+ky, y ! y yields that
f ⇠ [a, b, c] where b = r+2ka; that is, we can take b to be any value ⌘ r (mod 2a).
Similarly if F = [A, s, v], then we can take b to be any value ⌘ s (mod 2A). Such
a b exists by the Chinese Remainder Theorem provided r ⌘ s (mod 2), and r and
s have the same parity as the discriminants of f and F .

Exercise 12.11.3. Now d = b2�4ac = B2�4AC, and so if p|4aA, then (d/p) = 0 or
1. We will now prove that there are rational points on the curve aAu2 = v2 � dw2,
by using Legendre’s version of the local-global principle. There are obviously real
solutions with u = 0. If odd prime p divides aA but not d, then we have seen that
(d/p) = 1. If odd prime p divides d but not aA, then (aA/p) = (a/p)(A/p) =
�f (p)�F (p) = 1. Finally we have the case in which p divides a and d. Hence p
divides b, and p1kd as d is fundamental, and so p - (a/p)c. So writing a = pa0, b =
pb0, d = pD we have D = p(b0)2 � 4a0c which implies that (�a0cD/p) = 1. We
also have (Ac/p) = �f (p)�F (p) = 1, and so (�a0AD/p) = (�a0cD/p)(Ac/p) = 1
as needed. Dividing through by u we have aA = t2 � d�2 for some rationals t, �;
letting t = 2a↵+ b� we deduce that A = f(↵, �) for some ↵, � 2 Q. We can select
any �, � 2 Q for which ↵� � �� = 1 to obtain a transformation for f to a form
Ax2 + b0xy + c0y2. We now let x = X + kY, y = Y where k is chosen so that
2AK + b0 = B to obtain a form Ax2 + Bxy + C 0y2. Since both transformations
have determinant 1, we see that B2 �AC 0 = d and so C 0 = C. Hence f and F are
equivalent over the rationals.

Exercise 12.15.1(a). Use Euler’s criterion and Corollary 7.5.2.

Exercise 12.15.3(c). Use exercise 12.15.2(c).

Exercise 12.18.2(a). If even N = a2 + b2 + c2 + d2 with a ⌘ b (mod 2) and c ⌘ d
(mod 2), then N/2 = (a+b

2 )2 + (a�b
2 )2 + ( c+d

2 )2 + ( c�d
2 )2. If N ⌘ 1 (mod 4) with

N = a2 + b2 + c2 + d2, then we may let a be odd, the rest even. To obtain
representations of 2N we have the first two squares as (a+ b)2 +(a� b)2, the other
two even. This yields back a and the choice of b and so it is a 1-to-3 map. We have
a similar construction if N ⌘ 3 (mod 4).

Exercise 12.18.3(c). Use Legendre’s Theorem (Theorem 12.5). (d) Let u = a+ b�
c� d, v = a� b+ c� d, w = a� b� c+ d, etc. (e) Be careful with the cases where
u = v etc.


