Hints for exercises in chapter 12

Exercise 12.1.3. Suppose that d is a fundamental discriminant and $[a, b, c]$ is an imprimitive form of discriminant d. If $h \mid(a, b, c)$, then $h^{2} \mid d$, so that $h=2$. But then $D=d / h^{2} \equiv 0$ or $1(\bmod 4)$, a contradiction. Now suppose that d is not a fundamental discriminant. Then there exists a prime p such that $d=p^{2} D$, where $D \equiv 0$ or $1(\bmod 4)$. There is always a form g of discriminant D and so $p g$ is an imprimitive form of discriminant d.
Exercise 12.1.4 (c). Study the right-hand side of 12.1.2.
Exercise 12.1.5 Take determinants of both sides.
Exercise 12.1.6 First note that $b \equiv d \bmod 2$, and that if $b=2 k+\delta$ with δ the least residue of $d(\bmod 2)$, then the change of variable $x \rightarrow x-k y$ shows that $[1, b, c] \sim[1, \delta, A]$, the principal form. The value of A must be $(\delta-d) / 4$, so that the discriminant is $d=b^{2}-4 c$.
Exercise 12.4.1 One example is $d=-171$. We begin by noting that $|b| \leq a \leq$ $\sqrt{171 / 3}=\sqrt{57}<8$ and b is odd. If $b= \pm 1$, then $a c=(1+171) / 4=43$ with $a \leq c$ so that $a=1$. If $b= \pm 3$, then $a c=(9+171) / 4=45$ with $a \leq c$ so that $a=1,3,5$ and $1<|b|$. If $b= \pm 5$, then $a c=(25+171) / 4=49$ with $a \leq c$ so that $a=1,7$ and $1<|b|$. If $b= \pm 7$, then $a c=(49+171) / 4=55$ with $a \leq c$ so that $a=1,5$ which are both $<|b|$, so we are left with $[1,1,43]$, $[3,3,15],[5,3,9],[5,-3,9],[7,5,7]$, and $[3,3,15]$ which is imprimitive.
Exercise 12.4.2. These are the smallest negative fundamental discriminants of class numbers 1 to 8 :
For $d=-3$ we have $[1,1,1]$. For $d=-15$ we have $[1,1,4],[2,1,2]$.
For $d=-23$ we have $[1,1,6],[2, \pm 1,3]$.
For $d=-39$ we have $[1,1,10],[2, \pm 1,5],[3,3,4]$.
For $d=-47$ we have $[1,1,12],[2, \pm 1,6],[3, \pm 1,4]$.
For $d=-87$ we have $[1,1,22],[2, \pm 1,11],[3,3,8],[4, \pm 3,6]$.
For $d=-71$ we have $[1,1,18],[2, \pm 1,9],[3, \pm 1,6],[4, \pm 3,5]$.
For $d=-95$ we have $[1,1,24],[2, \pm 1,12],[3, \pm 1,8],[4, \pm 1,6],[5,5,6]$.
Exercise 12.4.3. These are the smallest even negative fundamental discriminants of class numbers 1 to 6 : For $d=-4$ we have $[1,0,1]$; for $d=-20$ we have $[1,0,5]$, $[2,2,3]$; for $d=-56$ we have $[1,0,14],[2,0,7],[3, \pm 2,5]$; for $d=-104$ we have $[1,0,26],[2,0,13],[3, \pm 2,9],[5, \pm 4,6]$.
Exercise 12.5.3 Use Rabinowicz's criterion, and quadratic reciprocity.
Exercise 12.6.1. Prove and use the inequality $a m^{2}+b m n+c n^{2} \geq a m^{2}-|b| \max \{|m|,|n|\}^{2}+$ $c n^{2}$.

Exercise 12.6 .2 (b). Use the smallest values properly represented by each form.
Exercise 12.6.5 (c). Use exercise 12.6.2(e).
Exercise 12.6.7(c). Given a solution B, let $C=\left(B^{2}-d\right) / 4 A$ and then $[A, B, C]$ represents A properly (by $(1,0)$). Find reduced $f \sim[A, B, C]$ and use the transformation matrix to find the representation as in (b).
Exercise 12.8.1. Prove this one prime factor of A at a time and then use the Chinese Remainder Theorem. For each prime p, try $f(1,0), f(0,1)$, and then $f(1,1)$.

Exercise 12.8.2 If $f=[a, r, u]$, then the transformation $x \rightarrow x+k y, y \rightarrow y$ yields that $f \sim[a, b, c]$ where $b=r+2 k a$; that is, we can take b to be any value $\equiv r(\bmod 2 a)$. Similarly if $F=[A, s, v]$, then we can take b to be any value $\equiv s(\bmod 2 A)$. Such a b exists by the Chinese Remainder Theorem provided $r \equiv s(\bmod 2)$, and r and s have the same parity as the discriminants of f and F.
Exercise 12.11.3. Now $d=b^{2}-4 a c=B^{2}-4 A C$, and so if $p \mid 4 a A$, then $(d / p)=0$ or 1. We will now prove that there are rational points on the curve $a A u^{2}=v^{2}-d w^{2}$, by using Legendre's version of the local-global principle. There are obviously real solutions with $u=0$. If odd prime p divides $a A$ but not d, then we have seen that $(d / p)=1$. If odd prime p divides d but not $a A$, then $(a A / p)=(a / p)(A / p)=$ $\sigma_{f}(p) \sigma_{F}(p)=1$. Finally we have the case in which p divides a and d. Hence p divides b, and $p^{1} \| d$ as d is fundamental, and so $p \nmid(a / p) c$. So writing $a=p a^{\prime}, b=$ $p b^{\prime}, d=p D$ we have $D=p\left(b^{\prime}\right)^{2}-4 a^{\prime} c$ which implies that $\left(-a^{\prime} c D / p\right)=1$. We also have $(A c / p)=\sigma_{f}(p) \sigma_{F}(p)=1$, and so $\left(-a^{\prime} A D / p\right)=\left(-a^{\prime} c D / p\right)(A c / p)=1$ as needed. Dividing through by u we have $a A=t^{2}-d \gamma^{2}$ for some rationals t, γ; letting $t=2 a \alpha+b \gamma$ we deduce that $A=f(\alpha, \gamma)$ for some $\alpha, \gamma \in \mathbb{Q}$. We can select any $\beta, \delta \in \mathbb{Q}$ for which $\alpha \delta-\beta \gamma=1$ to obtain a transformation for f to a form $A x^{2}+b^{\prime} x y+c^{\prime} y^{2}$. We now let $x=X+k Y, y=Y$ where k is chosen so that $2 A K+b^{\prime}=B$ to obtain a form $A x^{2}+B x y+C^{\prime} y^{2}$. Since both transformations have determinant 1 , we see that $B^{2}-A C^{\prime}=d$ and so $C^{\prime}=C$. Hence f and F are equivalent over the rationals.
Exercise 12.15.1 (a). Use Euler's criterion and Corollary 7.5.2
Exercise 12.15.3 (c). Use exercise 12.15.2 (c).
Exercise 12.18.2 a). If even $N=a^{2}+b^{2}+c^{2}+d^{2}$ with $a \equiv b(\bmod 2)$ and $c \equiv d$ $(\bmod 2)$, then $N / 2=\left(\frac{a+b}{2}\right)^{2}+\left(\frac{a-b}{2}\right)^{2}+\left(\frac{c+d}{2}\right)^{2}+\left(\frac{c-d}{2}\right)^{2}$. If $N \equiv 1(\bmod 4)$ with $N=a^{2}+b^{2}+c^{2}+d^{2}$, then we may let a be odd, the rest even. To obtain representations of $2 N$ we have the first two squares as $(a+b)^{2}+(a-b)^{2}$, the other two even. This yields back a and the choice of b and so it is a 1-to-3 map. We have a similar construction if $N \equiv 3(\bmod 4)$.
Exercise 12.18.3. (c). Use Legendre's Theorem (Theorem 12.5). (d) Let $u=a+b-$ $c-d, v=a-b+c-d, w=a-b-c+d$, etc. (e) Be careful with the cases where $u=v$ etc.

