Hints for exercises in chapter 11

Exercise 11.2.1. If $y=0$, then $m_{1} n=n_{1} m$. Now $(m, n)=\left(m_{1}, n_{1}\right)=1$ and so $m_{1}=m$ and $n_{1}=n$ contradicting our construction of the pair m, n.
Exercise 11.2.5. Consecutive powerful numbers of the form $2^{3} a^{2}$ followed by b^{2}, for some integers a and b.
Exercise 11.4.2 Use the product rule to compute the derivative.
Exercise 11.6.3. Given a smallest solution to $x^{2}-d y^{2}=1$ expand $(x+\sqrt{d} y)^{\phi(d)}$ $(\bmod d)$.
Exercise 11.6.11(c). Consider the example $1+\left(2^{n}-1\right)=2^{n}$ with $m \geq 2 / \epsilon$.
Exercise 11.14.3(a). Write $\left(\begin{array}{cc}p & s \\ r & \ell\end{array}\right)=\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right) \ldots\left(\begin{array}{cc}a_{n} & 1 \\ 1 & 0\end{array}\right)$ and use that $a_{n} \geq 2$. (b) Take determinants of the matrix equation so that $r s \equiv(-1)^{n}(\bmod p)$, and therefore $s=r$ or $p-r$. (c) Take the transpose of $\left(\begin{array}{ll}p & r \\ r & \ell\end{array}\right)$. (d) Write $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=$ $\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right)$
$\ldots\left(\begin{array}{cc}a_{m} & 1 \\ 1 & 0\end{array}\right)$ so that $\left(\begin{array}{ll}p & r \\ r & \ell\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$.
Exercise 11.16.2. One thought is to take $2^{a_{0}}$ if $a_{0} \geq 0$ and $3^{-a_{0}}$ if $a_{0}<0$, and then use the primes 5 and 7 for a_{1}, etc.

