Hints for exercises in chapter 10

Exercise 10.3.2. Hopefully $n=p q$ and $\phi(n)=d e-1=29 \times 197-1=5712$; if so, then $p+q=n+1-\phi(n)=180$. Therefore $(x-p)(x-q)=x^{2}-180 x+5891$ which we factor to obtain p and q.
Exercise 10.4.2(b). Use Corollary 7.5.3.
Exercise 10.7.5. Since n is a Carmichael number we know that it is squarefree and has prime divisors p and q, by Lemma 7.6.1. If $a^{(n-1) / 2} \equiv-1(\bmod n)$, then let $b \equiv 1(\bmod p)$ and $b \equiv a(\bmod q)$, and determine the value of $b^{(n-1) / 2}(\bmod p q)$.
Exercise 10.8.6 (a). Factor $4 x^{4}+1$ and substitute in $x=2^{n}$.
Exercise 10.19.1(c). Use the quadratic reciprocity law for 2 and -2 .

