Square roots and factoring

10.1. Square roots modulo n

Exercise 10.1.1. Find all of the square roots of $49 \bmod 3^{2} \cdot 5 \cdot 11$.

10.2. Cryptosystems

Exercise 10.2.1. One can also create a cryptosystem using binary addition. For example, our key could be the 20-letter word $k=10111011101111011001$. Then we could encrypt by using bit-by-bit addition; that is, $0 \bigoplus 0=1 \bigoplus 1=0$ and $0 \bigoplus 1=1 \bigoplus 0=1$. Therefore if the plaintext is $p=11100010101101000011$, then $c=p \bigoplus k$, namely

$$
\begin{aligned}
& \begin{array}{lllll}
10111 & 01110 & 11110 & 11001 \\
& 11100 & 01010 & 11010 & 00011
\end{array} \\
& =01011
\end{aligned} 00100 \quad 00100 \quad 11010 .
$$

It is easy to recover the plaintext since $p=c \bigoplus k$. Prove that one can recover the key if one knows the ciphertext and the plaintext.

10.3. RSA

Exercise 10.3.1. Let $n=11 \times 53$ be an RSA modulus with encryption exponent $e=7$. Determine d, the decryption exponent, by hand, using the Euclidean algorithm and the Chinese Remainder Theorem.

Exercise 10.3.2. Let $n=5891$ be an RSA modulus with encryption exponent $e=29$ and decryption exponent $d=197$. Use this information to factor n.

10.4. Certificates and the complexity classes P and $N P$

Exercise 10.4.1. Assuming only that 2 is prime, provide a certificate that proves that 107 is prime.

Exercise 10.4.2. Let $F_{m}=2^{2^{m}}+1$ with $m \geq 2$ be a Fermat number.
(a) Prove that if there exists an integer q for which $q^{\frac{F_{m}-1}{2}} \equiv-1\left(\bmod F_{m}\right)$, then F_{m} is prime.
(b) Deduce an "if and only if" condition for the primality of F_{m} using exercise 8.5.4

10.5. Polynomial time primality testing

Exercise 10.5.1. Let p^{k} be the highest power of prime p that divides n, with $k \geq 1$.
(a) Prove that p^{k} does not divide $\binom{n}{p}$.
(b) Deduce that n does not divide $\binom{n}{p}$.
(c) Show that if n is composite, then n does not divide all the coefficients of the polynomial $(1+x)^{n}-x^{n}-1$.

Exercise 10.5.2. Use the previous exercise to show:
(a) n is prime if and only if $(x+1)^{n} \equiv x^{n}+1(\bmod n)$.
(b) If $(n, a)=1$, then n is prime if and only if $(x+a)^{n} \equiv x^{n}+a(\bmod n)$.
(c) Prove that if n is prime, then $(x+a)^{n} \equiv x^{n}+a\left(\bmod \left(n, x^{r}-1\right)\right)$ for any integer a with $(a, n)=1$ and any $r>1$.

10.6. Factoring methods

Exercise 10.6.1. Factor 1649 using Fermat's method.
Exercise 10.6.2. Show that $\prod_{i \in I} a_{i}$ is a square if and only if $\sum_{i \in I} v_{i} \equiv(0,0, \ldots, 0)(\bmod 2)$.

Additional exercises

Exercise 10.7.1. Suppose that n is odd with at least two distinct prime factors. Prove that for at least half of the pairs x, y with $0 \leq x, y<n, \operatorname{gcd}(x, n)=1$ and $x^{2} \equiv y^{2}(\bmod n)$, we have $1<\operatorname{gcd}(x-y, n)<n$.

Exercise 10.7.2. Factor $n=62749$. Let $m=[\sqrt{n}]+1=251$. Compute $(m+i)^{2}(\bmod n)$ for $i=0,1,2, \ldots$ and retain those residues whose prime factors are all ≤ 11. Therefore we have $251^{2} \equiv 2^{2} \cdot 3^{2} \cdot 7 ; \quad 253^{2} \equiv 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 ; \quad 257^{2} \equiv 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 ; \quad 260^{2} \equiv 3^{2} 7^{2} \cdot 11 ; \quad 268^{2} \equiv$ $3 \cdot 5^{2} \cdot 11^{2} ; \quad 271^{2} \equiv 2^{2} \cdot 3^{5} \cdot 11(\bmod n)$. Use this information to factor n.

Exercise 10.7.3. Alice is sending Bob messages using RSA with public key modulus $n=$ 2027651281 and encryption exponent $e=66308903$. Oscar recalls that n is the number Fermat factored in section 10.6 Find the decryption exponent for Oscar.

Exercise 10.7.4. Let n be prime and suppose q_{1}, \ldots, q_{k} are the odd prime factors of $n-1$.
(a) Prove that the product of these primes, $N_{1}:=q_{1} \cdots q_{k}$, is $\leq n / 2$.
(b) ${ }^{\dagger}$ To certify that q_{1}, \ldots, q_{k} are prime we need the set of odd prime factors of $q_{1}-1, \ldots, q_{k}-1$. Let's call those primes p_{1}, \ldots, p_{ℓ}. Prove that the product of these primes, $N_{2}:=p_{1} \cdots p_{\ell}$, is $\leq N_{1} / 2^{k}$.
(c) Generalize this argument to show that if there are r primes to be certified at the j th stage, then $N_{j+1} \leq N_{j} / 2^{r}$.
$(\mathrm{d})^{\dagger}$ Prove that if there are m primes that were certified to be prime during all the steps of this argument, then $2^{m} \leq n$. Explain why this implies that primality testing is in NP.

Exercise 10.7.5. ${ }^{\dagger}$ Suppose n is an odd composite, and $a^{(n-1) / 2} \equiv 1$ or $-1(\bmod n)$ for every a with $(a, n)=1$. Deduce that $a^{(n-1) / 2} \equiv 1(\bmod n)$ for every a with $(a, n)=1$ and that n is a Carmichael number.

Appendix 10A. Pseudoprime tests using square roots of 1

10.8. The difficulty of finding all square roots of 1

Exercise 10.8.1. Find all bases b for which 15 is a base- b Euler pseudoprime.

Exercise 10.8.2. ${ }^{\dagger}$ We wish to show that every odd composite n is not a base- b Euler pseudoprime for some integer b, coprime to n. Suppose not, i.e., that n is a base- b Euler pseudoprime for every integer b with $(b, n)=1$.
(a) Show that n is a Carmichael number.
(b) Show that if prime p divides n, then $p-1$ cannot divide $\frac{n-1}{2}$.
(c) Deduce that $(b / n) \equiv(b / p)(\bmod p)$ for each prime p dividing n.
(d) Explain why (c) cannot hold for every integer b coprime to n.

Exercise 10.8.3. Prove that $F_{n}=2^{2^{n}}+1$ is either a prime or a base- 2 strong pseudoprime.
Exercise 10.8.4. Prove that if n is a base- 2 pseudoprime, then $2^{n}-1$ is a base- 2 strong pseudoprime and a base-2 Euler pseudoprime. Deduce that there are infinitely many base-2 strong pseudoprimes.

Exercise 10.8.5. Pépin showed that one can test Fermat numbers F_{m} for primality by using just one strong pseudoprime test; i.e., F_{m} is prime if and only if $3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right)$.
(a) Use exercise 8.5 .4 to show if F_{m} is prime, then $3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right)$.
(b) In the other direction show that if $3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right)$, then $\operatorname{ord}_{p}(3)=2^{2^{m}}$ whenever prime $p \mid F_{m}$.
(c) Deduce that $F_{m}-1 \leq p-1$ in (b) and so F_{m} is prime.

Exercise 10.8.6. ${ }^{\dagger}$ (a) Prove that $A:=\left(4^{p}+1\right) / 5$ is composite for all primes $p>3$.
(b) Deduce that A is a base- 2 strong pseudoprime.

Exercise 10.8.7. \ddagger How many witnesses are there $\bmod n$? Suppose that $n-1=2^{k} m$ with m odd and $k \geq 1$, and that n has ω distinct prime factors. Let g_{p} be the largest odd integer dividing $(p-1, n-1)$, and let 2^{R+1} be the largest power of 2 dividing $\operatorname{gcd}(p-1: p \mid n)$.
(a) Prove that $R \leq k-1$.
(b) Show that 10.8 .1 is $1,1, \ldots, 1$ if and only if $a^{g_{p}} \equiv 1\left(\bmod p^{e}\right)$ for every prime power $p^{e} \| n$.
(c) Show that there are $\prod_{p \mid n} g_{p}$ such integers $a(\bmod n)$.
(d) Show that if 10.8 .1 is $1,1, \ldots, 1,-1, *, \ldots, *$, with $r{ }^{*}$'s at the end, then $0 \leq r \leq R$, and that this holds if and only if $a^{2^{r}} g_{p} \equiv-1\left(\bmod p^{e}\right)$ for every prime power $p^{e} \| n$.
(e) Show that there are $\leq \prod_{p \mid n} 2^{r} g_{p}$ such integers $a(\bmod n)$.
(f) Show the number of strong pseudoprimes mod n is

$$
\prod_{p \mid n}\left(2^{R} g_{p}\right) \cdot\left(1+\frac{1}{2^{\omega}}+\frac{1}{2^{2 \omega}}+\cdots+\frac{1}{2^{(R-1) \omega}}+\frac{2}{2^{R \omega}}\right)
$$

(g) Prove that $2^{R} g_{p} \leq \frac{p-1}{2}$ and so deduce that the quantity in (f) is $\leq \frac{\phi(n)}{2^{\omega-1}}$, and so is $<\frac{1}{4} \phi(n)$ if $\omega \geq 3$.
(h) Show that there are $\leq \frac{1}{4} \phi(n)$ reduced residues mod n which are not witnesses, whenever $n \geq 10$ with equality holding if and only if either

- $n=p q$ where $p=2 m+1, q=4 m+1$ are primes with m odd, or
- $n=p q r$ is a Carmichael number with p, q, r primes each $\equiv 3(\bmod 4)($ e.g., $7 \cdot 19 \cdot 67)$.

Appendix 10B. Factoring with squares

10.9. Factoring with polynomial values

Exercise 10.9.1. Show that if $r_{i}=r_{j}$, then $a_{i} a_{j}$ is a square times a y-smooth integer.
Exercise 10.9.2. Show that if ℓ, p, and q are primes $>y$ with $r_{i}=\ell p, r_{j}=p q$, and $r_{k}=\ell q$, then $a_{i} a_{j} a_{k}$ is a square times a y-smooth integer.

Appendix 10C. Identifying primes of a given size

10.10. The Proth-Pocklington-Lehmer primality test

Exercise 10.10.1 (Proth's Theorem). Suppose that $n=k \cdot 2^{m}+1$ where $k<2^{m}$. Show that n is prime if and only if there exists an integer a for which $a^{\frac{n-1}{2}} \equiv-1(\bmod n)$.

Exercise 10.10.2. Suppose that $m>1$.
(a) Show that $n=2^{m}+1$ is prime if and only if $3^{2^{m-1}} \equiv-1(\bmod n)$ if and only if $5^{2^{m-1}} \equiv-1$ $(\bmod n)$.
(b) Let $u_{0}=3$ and then $u_{m+1}=u_{m}^{2}$ for all $n \geq 0$. Prove that $2^{m}+1$ is prime if and only if $u_{m-1} \equiv-1\left(\bmod 2^{m}+1\right)$. (This should be easy to implement algorithmically.)

Appendix 10D. Carmichael numbers

10.11. Constructing Carmichael numbers

10.12. Erdős's construction

Appendix 10E. Cryptosystems based on discrete logarithms

10.13. The Diffie-Hellman key exchange

10.14. The El Gamal cryptosystem

Appendix 10F. Running times of algorithms
10.15. P and $N P$

10.16. Difficult problems

Appendix 10G. The AKS test
Exercise 10.17.1. Suppose that $(a, n)=1$. Prove that n is prime if and only if $(x+a)^{n} \equiv x^{n}+a$ $(\bmod n)$ in $\mathbb{Z}[x]$.
10.17. A computationally quicker characterization of the primes
10.18. A set of extraordinary congruences

Appendix 10H. Factoring algorithms for polynomials

10.19. Testing polynomials for irreducibility

Exercise 10.19.1. (a) Factor $x^{4}+1(\bmod 2)$.
(b) If prime $p \equiv 1(\bmod 4)$, show that we can factor $x^{4}+1$ as $\left(x^{2}+b\right)\left(x^{2}-b\right)(\bmod p)$ for some value of $b(\bmod p)$.
(c) If prime $p \equiv 3(\bmod 4)$, show that we can factor $x^{4}+1$ as $\left(x^{2}+b x+a\right)\left(x^{2}-b x+a\right)(\bmod p)$, for some values of a and $b(\bmod p)$.

10.20. Testing whether a polynomial is squarefree

10.21. Factoring a squarefree polynomial modulo p

Exercise 10.21.1. (a) Suppose that $S_{1}, \ldots, S_{m} \subset\{1, \ldots, r\}$ with the property that for any $i \neq j$ there exists k such that $i \in S_{k}$ but $j \notin S_{k}$. Prove that for each $h, 1 \leq h \leq r$, there is a subset $I_{h} \subset\{1, \ldots, m\}$ for which $\bigcap_{k \in I_{h}} S_{k}=\{h\}$.
(b) Let P_{1}, \ldots, P_{r} be irreducible polynomials mod p. Suppose we are given a collection of polynomials $h_{1}(x), \ldots, h_{m}(x)(\bmod p)$ which are each products of some subset of the $P_{i}(x)$, with the property that for any $i \neq j$ there exists k such that P_{i} divides h_{k} but not P_{j}. Show that if we take all the possible gcds of the h_{k}, we will obtain each of the P_{j}.

