
Chapter 10

Square roots and factoring

10.1. Square roots modulo n

Exercise 10.1.1. Find all of the square roots of 49 mod 32 · 5 · 11.

10.2. Cryptosystems

Exercise 10.2.1. One can also create a cryptosystem using binary addition. For example, our
key could be the 20-letter word k = 10111011101111011001. Then we could encrypt by using
bit-by-bit addition; that is, 0

L
0 = 1

L
1 = 0 and 0

L
1 = 1

L
0 = 1. Therefore if the plaintext

is p = 11100010101101000011, then c = p
L

k, namely

10111 01110 11110 11001L
11100 01010 11010 00011

= 01011 00100 00100 11010.

It is easy to recover the plaintext since p = c
L

k. Prove that one can recover the key if one knows
the ciphertext and the plaintext.

10.3. RSA

Exercise 10.3.1. Let n = 11⇥53 be an RSA modulus with encryption exponent e = 7. Determine
d, the decryption exponent, by hand, using the Euclidean algorithm and the Chinese Remainder
Theorem.

Exercise 10.3.2. Let n = 5891 be an RSA modulus with encryption exponent e = 29 and
decryption exponent d = 197. Use this information to factor n.

10.4. Certificates and the complexity classes P and NP

Exercise 10.4.1. Assuming only that 2 is prime, provide a certificate that proves that 107 is
prime.

Exercise 10.4.2. Let Fm = 22
m

+ 1 with m � 2 be a Fermat number.

(a) Prove that if there exists an integer q for which q
Fm�1

2 ⌘ �1 (mod Fm), then Fm is prime.
(b) Deduce an “if and only if” condition for the primality of Fm using exercise 8.5.4.
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76 Square roots and factoring

10.5. Polynomial time primality testing

Exercise 10.5.1. Let pk be the highest power of prime p that divides n, with k � 1.
(a) Prove that pk does not divide

�n
p

�
.

(b) Deduce that n does not divide
�n
p

�
.

(c) Show that if n is composite, then n does not divide all the coe�cients of the polynomial
(1 + x)n � xn � 1.

Exercise 10.5.2. Use the previous exercise to show:
(a) n is prime if and only if (x+ 1)n ⌘ xn + 1 (mod n).
(b) If (n, a) = 1, then n is prime if and only if (x+ a)n ⌘ xn + a (mod n).
(c) Prove that if n is prime, then (x + a)n ⌘ xn + a (mod (n, xr � 1)) for any integer a with

(a, n) = 1 and any r > 1.

10.6. Factoring methods

Exercise 10.6.1. Factor 1649 using Fermat’s method.

Exercise 10.6.2. Show that
Q

i2I ai is a square if and only if
P

i2I vi ⌘ (0, 0, . . . , 0) (mod 2).

Additional exercises

Exercise 10.7.1. Suppose that n is odd with at least two distinct prime factors. Prove that for
at least half of the pairs x, y with 0  x, y < n, gcd(x, n) = 1 and x2 ⌘ y2 (mod n), we have
1 < gcd(x� y, n) < n.

Exercise 10.7.2. Factor n = 62749. Let m = [
p
n] + 1 = 251. Compute (m + i)2 (mod n)

for i = 0, 1, 2, . . . and retain those residues whose prime factors are all  11. Therefore we have
2512 ⌘ 22 · 32 · 7; 2532 ⌘ 22 · 32 · 5 · 7; 2572 ⌘ 22 · 3 · 52 · 11; 2602 ⌘ 3272 · 11; 2682 ⌘
3 · 52 · 112; 2712 ⌘ 22 · 35 · 11 (mod n). Use this information to factor n.

Exercise 10.7.3. Alice is sending Bob messages using RSA with public key modulus n =
2027651281 and encryption exponent e = 66308903. Oscar recalls that n is the number Fermat
factored in section 10.6. Find the decryption exponent for Oscar.

Exercise 10.7.4. Let n be prime and suppose q1, . . . , qk are the odd prime factors of n� 1.
(a) Prove that the product of these primes, N1 := q1 · · · qk, is  n/2.
(b)† To certify that q1, . . . , qk are prime we need the set of odd prime factors of q1�1, . . . , qk�1.

Let’s call those primes p1, . . . , p`. Prove that the product of these primes, N2 := p1 · · · p`,
is  N1/2k.

(c) Generalize this argument to show that if there are r primes to be certified at the jth stage,
then Nj+1  Nj/2r.

(d)† Prove that if there are m primes that were certified to be prime during all the steps of this
argument, then 2m  n. Explain why this implies that primality testing is in NP.

Exercise 10.7.5.† Suppose n is an odd composite, and a(n�1)/2 ⌘ 1 or �1 (mod n) for every a
with (a, n) = 1. Deduce that a(n�1)/2 ⌘ 1 (mod n) for every a with (a, n) = 1 and that n is a
Carmichael number.

Appendix 10A. Pseudoprime tests using square roots of 1

10.8. The di�culty of finding all square roots of 1

Exercise 10.8.1. Find all bases b for which 15 is a base-b Euler pseudoprime.
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Exercise 10.8.2.† We wish to show that every odd composite n is not a base-b Euler pseudoprime
for some integer b, coprime to n. Suppose not, i.e., that n is a base-b Euler pseudoprime for every
integer b with (b, n) = 1.
(a) Show that n is a Carmichael number.
(b) Show that if prime p divides n, then p� 1 cannot divide n�1

2 .
(c) Deduce that (b/n) ⌘ (b/p) (mod p) for each prime p dividing n.
(d) Explain why (c) cannot hold for every integer b coprime to n.

Exercise 10.8.3. Prove that Fn = 22
n
+ 1 is either a prime or a base-2 strong pseudoprime.

Exercise 10.8.4. Prove that if n is a base-2 pseudoprime, then 2n � 1 is a base-2 strong pseu-
doprime and a base-2 Euler pseudoprime. Deduce that there are infinitely many base-2 strong
pseudoprimes.

Exercise 10.8.5. Pépin showed that one can test Fermat numbers Fm for primality by using
just one strong pseudoprime test; i.e., Fm is prime if and only if 3(Fm�1)/2 ⌘ �1 (mod Fm).
(a) Use exercise 8.5.4 to show if Fm is prime, then 3(Fm�1)/2 ⌘ �1 (mod Fm).
(b) In the other direction show that if 3(Fm�1)/2 ⌘ �1 (mod Fm), then ordp(3) = 22

m
when-

ever prime p|Fm.
(c) Deduce that Fm � 1  p� 1 in (b) and so Fm is prime.

Exercise 10.8.6.† (a) Prove that A := (4p + 1)/5 is composite for all primes p > 3.
(b) Deduce that A is a base-2 strong pseudoprime.

Exercise 10.8.7.‡ How many witnesses are there mod n? Suppose that n � 1 = 2km with m
odd and k � 1, and that n has ! distinct prime factors. Let gp be the largest odd integer dividing
(p� 1, n� 1), and let 2R+1 be the largest power of 2 dividing gcd(p� 1 : p|n).
(a) Prove that R  k � 1.
(b) Show that (10.8.1) is 1, 1, . . . , 1 if and only if agp ⌘ 1 (mod pe) for every prime power pekn.
(c) Show that there are

Q
p|n gp such integers a (mod n).

(d) Show that if (10.8.1) is 1, 1, . . . , 1,�1, ⇤, . . . , ⇤, with r *’s at the end, then 0  r  R, and
that this holds if and only if a2

rgp ⌘ �1 (mod pe) for every prime power pekn.
(e) Show that there are 

Q
p|n 2rgp such integers a (mod n).

(f) Show the number of strong pseudoprimes mod n is
Y

p|n
(2Rgp) ·

✓
1 +

1

2!
+

1

22!
+ · · ·+

1

2(R�1)!
+

2

2R!

◆
.

(g) Prove that 2Rgp  p�1
2 and so deduce that the quantity in (f) is  �(n)

2!�1 , and so is < 1
4�(n)

if ! � 3.
(h) Show that there are  1

4�(n) reduced residues mod n which are not witnesses, whenever
n � 10 with equality holding if and only if either

• n = pq where p = 2m+ 1, q = 4m+ 1 are primes with m odd, or
• n = pqr is a Carmichael number with p, q, r primes each ⌘ 3 (mod 4) (e.g., 7 ·19 ·67).

Appendix 10B. Factoring with squares

10.9. Factoring with polynomial values

Exercise 10.9.1. Show that if ri = rj , then aiaj is a square times a y-smooth integer.

Exercise 10.9.2. Show that if `, p, and q are primes > y with ri = `p, rj = pq, and rk = `q,
then aiajak is a square times a y-smooth integer.
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Appendix 10C. Identifying primes of a given size

10.10. The Proth-Pocklington-Lehmer primality test

Exercise 10.10.1 (Proth’s Theorem). Suppose that n = k · 2m + 1 where k < 2m. Show that n

is prime if and only if there exists an integer a for which a
n�1
2 ⌘ �1 (mod n).

Exercise 10.10.2. Suppose that m > 1.

(a) Show that n = 2m+1 is prime if and only if 32
m�1 ⌘ �1 (mod n) if and only if 52

m�1 ⌘ �1
(mod n).

(b) Let u0 = 3 and then um+1 = u2
m for all n � 0. Prove that 2m + 1 is prime if and only if

um�1 ⌘ �1 (mod 2m + 1). (This should be easy to implement algorithmically.)

Appendix 10D. Carmichael numbers

10.11. Constructing Carmichael numbers

10.12. Erdős’s construction

Appendix 10E. Cryptosystems based on discrete logarithms

10.13. The Di�e-Hellman key exchange

10.14. The El Gamal cryptosystem

Appendix 10F. Running times of algorithms

10.15. P and NP

10.16. Di�cult problems

Appendix 10G. The AKS test

Exercise 10.17.1. Suppose that (a, n) = 1. Prove that n is prime if and only if (x+a)n ⌘ xn+a
(mod n) in Z[x].

10.17. A computationally quicker characterization of the primes

10.18. A set of extraordinary congruences
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Appendix 10H. Factoring algorithms for polynomials

10.19. Testing polynomials for irreducibility

Exercise 10.19.1. (a) Factor x4 + 1 (mod 2).
(b) If prime p ⌘ 1 (mod 4), show that we can factor x4 + 1 as (x2 + b)(x2 � b) (mod p) for

some value of b (mod p).
(c) If prime p ⌘ 3 (mod 4), show that we can factor x4+1 as (x2+bx+a)(x2�bx+a) (mod p),

for some values of a and b (mod p).

10.20. Testing whether a polynomial is squarefree

10.21. Factoring a squarefree polynomial modulo p

Exercise 10.21.1. (a) Suppose that S1, . . . , Sm ⇢ {1, . . . , r} with the property that for any
i 6= j there exists k such that i 2 Sk but j 62 Sk. Prove that for each h, 1  h  r, there is
a subset Ih ⇢ {1, . . . ,m} for which

T
k2Ih

Sk = {h}.
(b) Let P1, . . . , Pr be irreducible polynomials mod p. Suppose we are given a collection of

polynomials h1(x), . . . , hm(x) (mod p) which are each products of some subset of the Pi(x),
with the property that for any i 6= j there exists k such that Pi divides hk but not Pj . Show
that if we take all the possible gcds of the hk, we will obtain each of the Pj .


