
Appendix 3A: Factoring
binomial coe�cients, and
Pascal’s Triangle mod p

3.10. The prime powers dividing a given binomial coe�cient

Lemma 3.10.1. The power of prime p that divides n! is
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k�1[n/p
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Proof. We wish to determine the power of p dividing n! = 1 · 2 · 3 · · · (n� 1) · n. If
pk is the power of p dividing m then we will count 1 for p dividing m, then 1 for p2

dividing m,. . . , and finally 1 for pk dividing m. Therefore the power of p dividing
n! equals the number of integers m, 1  m  n that are divisible by p, plus the
number of integers m, 1  m  n that are divisible by p2, plus etc. The result
follows as there are [n/pj ] integers m, 1  m  n, that are divisible by pj for each
j � 1, by exercise 1.7.6(c). ⇤

Exercise 3.10.1. Write n = n
0

+ n
1

p+ . . .+ n
d

pd in base p so that each n
j

2 {0, 1, . . . , p� 1}.
(a) Prove that [n/pk] = (n� (n

0

+ n
1

p+ . . .+ n
k�1

pk�1))/pk.
The sum of the digits of n in base p is defined to be s

p

(n) := n
0

+ n
1

+ . . .+ n
d

.

(b) Prove that the exact power of prime p that divides n! is
n�s

p

(n)

p�1

.

Theorem 3.7 (Kummer’s Theorem). The largest power of prime p that divides
the binomial coe�cient

�
a+b
a

�
is given by the number of carries when adding a and

b in base p.
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98 Appendix 3A: Factoring binomial coe�cients, and Pascal’s Triangle mod p

Example: To recover the factorization of
�14
6

�
we add 6 and 8 in each prime base

 14:

0101 020 11 06 06 06
10002 0223 135 117 0811 0813
1101 112 24 20 13 11

We see that there are no carries in base 2, 1 carry in base 3, no carries in base 5,
1 carry in base 7, 1 carry in base 11, and 1 carry in base 13, so we deduce that�14
6

�
= 31 · 71 · 111 · 131.

Proof. For given integer k � 1, let q = pk. Then let A and B be the least non-
negative residue of a and b (mod q), respectively, so that 0  A,B  q � 1. Note
that A and B give the first k digits (from the right) of a and b in base p. If C is
the first k digits of a+ b in base p then C is the least non-negative residue of a+ b
(mod q), that is of A+B (mod q). Now 0  A+B < 2q:

• If A+B < q then C = A+B and there is no carry in the kth digit when we
add a and b in base p.

• If A+B � q then C = A+B� q and so there is a carry of 1 in the kth digit
when we add a and b in base p.

We need to relate these observations to the formula in Lemma 3.10.1. The
trick comes in noticing that A = a � pk

h
a
pk

i
, and similarly B = b � pk

h
b
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i
and

C = a+ b� pk
h
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i
. Therefore


a+ b

pk

�
�

a

pk

�
�

b

pk

�
=

A+B � C

pk
=

(
1 if there is a carry in the kth digit;

0 if not;

and so
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equals the number of carries when adding a and b in base p. However Lemma 3.10.1
implies that this also equals the exact power of p dividing (a+b)!

a!b! =
�
a+b
a

�
, and the

result follows. ⇤

Exercise 3.10.2. State, with proof, the analogy to Kummer’s Theorem for trinomial coe�cients
n!/(a!b!c!) where a+ b+ c = n.

Corollary 3.10.1. If pe divides the binomial coe�cient
�
n
m

�
then pe  n.

Proof. There are k + 1 digits in the base p expansion of n when pk  n < pk+1.
When adding m and n�m there can be carries in every digit except the (k + 1)st
(which corresponds to the number of multiples of pk). Therefore there are no more
than k carries when adding m to n � m in base p, and so the result follows from
Kummer’s Theorem. ⇤

Exercise 3.10.3. Prove that if 0  k  n then
�

n

k

�

divides lcm[m : m  n].
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3.11. Pascal’s Triangle mod 2

In section 0.3 we explained the theory and practice of constructing Pascal’s Triangle.
We are now interested in constructing Pascal’s Triangle modulo 2, mod 3, mod
4, etc. To do so one can either reduce the binomial coe�cients mod m (for m =
2, 3, 4, . . .), or one can rework Pascal’s Triangle, starting with a 1 in the top row and
then obtaining a row from the previous one by adding the two entries immediately
above the given entry, modulo m. For example, Pascal’s Triangle mod 2, starts
with the rows

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1

It is perhaps easiest to visualize this by replacing 1 (mod 2) by a dark square; and
otherwise, a white square, as in the following fascinating diagram:13

Pascal’s Triangle
(mod 2)

One can see patterns emerging. For example the rows corresponding to n =
1, 3, 7, 15, . . . are all 1’s, and the next rows, n = 2, 4, 8, 16, . . . start and end with a
1, and have all 0’s in-between. Even more: The two 1’s at either end of row n = 4
seem to each be the first entry of a (four line) triangle, which is an exact copy of
the first four rows of Pascal’s Triangle mod 2. Similarly the two 1’s at either end
of row n = 8, and the eight-line triangles beneath (and including) them. In general
if Tk denotes the top 2k rows of Pascal’s triangle mod 2, then Tk+1 is given by a
triangle of copies of Tk, with an inverted triangle of zeros in the middle, as in the
following diagram:

13These and other images in this section reproduced from
http://www-math.ucdenver.edu/⇠wcherowi/jcorm5.html, with kind permission of Bill Cherowitzo
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Tk

TkTk

0
Tk+1 =

Figure 1. The top 2k+1 rows of Pascal’s Triangle mod 2, in terms of the top
2k rows.

This is called self-similarity. One immediate consequence is that one can determine
the number of 1’s in a given row: If 2k  n < 2k+1 then row n consists of two
copies of row m (:= n� 2k) with some 0’s in-between.

Exercise 3.11.1. Prove that there are 2k odd entries in the nth row of Pascal’s triangle, where
k = s

2

(n), the number of 1’s in the binary expansion of n.

This self-similarity generalizes nicely for other primes p, where we again replace
integers divisible by p by a white square, and those not divisible by p by a black
square.

Pascal’s Triangle Pascal’s Triangle Pascal’s Triangle
(mod 3) (mod 5) (mod 7)

The top p rows are all black since the entries
�
n
m

�
with 0  m  n  p�1 are never

divisible by p. Let Tk denote the top pk rows of Pascal’s triangle. Then Tk+1 is
given by an array of p rows of triangles, in which the nth row contains n copies of
Tk, with inverted triangles of 0’s in-between.

Pascal’s Triangle modulo primes p is a bit more complicated; we wish to color
in the black squares with one of p� 1 colors, each representing a di↵erent reduced
residue class mod p. Call the top row, the 0th row, and the leftmost entry of the
each row, its 0th entry. Therefore the mth entry of the nth row is

�
n
m

�
. By Lucas’

Theorem (exercise 2.5.10) the value of
�
rpk+s
apk+b

�
(mod p), which is the bth entry of

the sth row of the copy of Tk which is the ath entry of the rth row of the copies of
Tk that make up Tk+1, is ⌘

�
r
a

��
s
b

�
(mod p). In other words, the values in the copy

of Tk which is the ath entry of the rth row of the copies of Tk, are
�
r
a

�
times the

values in Tk.

The odd entries in Pascal’s Triangle mod 4 make even more interesting patterns,
but this will take us too far afield; see [2] for a detailed discussion.
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Reading each row of Pascal’s Triangle mod 2 as the binary expansion of an
integer, we obtain the numbers

1, 112 = 3, 1012 = 5, 11112 = 15, 100012 = 17, 1100112 = 51, 10101012 = 85, . . .

Do you recognize these numbers? If you factor them you obtain

1, F0, F1, F0F1 F2, F0F2, F1F2, F0F1F2, . . .

where Fm = 22
m

+ 1 are the Fermat numbers (introduced in exercise 0.4.14). It
appears that all are products of Fermat numbers, and one can even guess at which
Fermat numbers. For example the 6th row is F2F1 and 6 = 22+21 in base 2, whereas
the 7th row is F2F1F0 and 7 = 22+21+20 in base 2, and our other examples follow
this same pattern. This leads to the following challenging problem:

Exercise 3.11.2.

† Show that the nth row of Pascal’s Triangle mod 2, considered as a binary
number, is given by

Q

k

j=0

F
n

j

, where n = 2n0 + 2n1 + . . . + 2nk , with 0  n
0

< n
1

< . . . < n
k

(i.e. the binary expansion of n).14
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14An m-sided regular polygon with m odd is constructible with ruler and compass (see section
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m created here include all of the odd m-sided, constructible, regular polygons.


