
Appendix 1A: Reformulating
the Euclidean Algorithm

In section 1.5 we saw that the Euclidean algorithm may be usefully re-formulated
in terms of continued fractions. In this appendix we re-formulate the Euclidean
Algorithm in two further ways: Firstly, in terms of matrix multiplication, which
makes many of the calculations easier; and secondly, in terms of a dynamical system,
which will be useful later when we develop similar ideas in a more general context.

1.8. Euclid matrices, and Euclid’s algorithm

In discussing the Euclidean algorithm we showed that gcd(85, 48) =gcd(48, 37) from
noting that 85� 1 · 48 = 37. In this we changed our attention from the pair 85, 48
to the pair 48, 37. Writing this down using matrices, we performed this change via
the map ✓

85
48

◆
!

✓
48
37

◆
=

✓
0 1
1 �1

◆✓
85
48

◆
.

Next we went from the pair 48, 37 to the pair 37, 11 via the map
✓
48
37

◆
!

✓
37
11

◆
=

✓
0 1
1 �1

◆✓
48
37

◆
,

and then, from the pair 37, 11 to the pair 11, 4 via the map
✓
37
11

◆
!

✓
11
4

◆
=

✓
0 1
1 �3

◆✓
37
11

◆
.

We can compose these maps so that
✓
85
48

◆
!

✓
48
37

◆
!

✓
37
11

◆
=

✓
0 1
1 �1

◆✓
48
37

◆
=

✓
0 1
1 �1

◆
·
✓
0 1
1 �1

◆✓
85
48

◆

and then✓
85
48

◆
!

✓
11
4

◆
=

✓
0 1
1 �3

◆✓
37
11

◆
=

✓
0 1
1 �3

◆
·
✓
0 1
1 �1

◆✓
0 1
1 �1

◆✓
85
48

◆
.
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Continuing on to the end of the Euclidean algorithm, via 11 = 2 ·4+3, 4 = 1 ·3+1
and 3 = 3 · 1 + 0, we have

✓
1
0

◆
=

✓
0 1
1 �3

◆✓
0 1
1 �1

◆✓
0 1
1 �2

◆✓
0 1
1 �3

◆✓
0 1
1 �1

◆✓
0 1
1 �1

◆✓
85
48

◆
.

Since

✓
0 1
1 �x

◆✓
x 1
1 0

◆
= I for any x, we can invert to obtain

✓
85
48

◆
= M

✓
1
0

◆

where

M =

✓
1 1
1 0

◆✓
1 1
1 0

◆✓
3 1
1 0

◆✓
2 1
1 0

◆✓
1 1
1 0

◆✓
3 1
1 0

◆
.

Here we used that the inverse of a product of matrices is the product of the inverses
of those matrices, in reverse order. If we write

M :=

✓
↵ �
� �

◆

where ↵,�, �, � are integers (since the set of integer matrices are closed under mul-
tiplication), then

↵� � �� = detM = (�1)6 = 1,

sinceM is the product of six matrices, each of determinant �1, and the determinant
of the product of matrices, equals the product of the determinants. Now

✓
85
48

◆
= M

✓
1
0

◆
=

✓
↵ �
� �

◆✓
1
0

◆
=

✓
↵
�

◆

so that ↵ = 85 and � = 48. This implies that

85 � � 48� = 1;

that is, the matrix method gives us the solution to (1.2.1) without extra e↵ort.

If we multiply the matrices definingM together in order, we obtain the sequence
✓
1 1
1 0

◆
,

✓
1 1
1 0

◆✓
1 1
1 0

◆
=

✓
2 1
1 1

◆
,

✓
2 1
1 1

◆✓
3 1
1 0

◆
=

✓
7 2
4 1

◆
,

and then ✓
16 7
9 4

◆
,

✓
23 16
13 9

◆
,

✓
85 23
48 13

◆
.

We notice that the columns give us the numerators and denominators of the con-
vergents of the continued fraction for 85/48, as discussed in section 1.5.

We can generalize this discussion to formally explain the Euclidean algorithm:

Let u0 := a � u1 := b � 1. Given uj � uj+1 � 1,

• Let aj = [uj/uj+1], an integer � 1;

• Let uj+2 = uj � ajuj+1 so that 0  uj+2  uj+1 � 1;

• If uj+2 = 0 then g :=gcd(a, b) = uj+1, and terminate algorithm;

• Otherwise, repeat these steps with the new pair uj+1, uj+2.
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The first two steps work by Lemma 1.1.1; the third by exercise 1.1.3(i). We end up
with the continued fraction

a/b = [a0, a1, . . . , ak]

for some k � 0. The convergents pj/qj = [a0, a1, . . . , aj ] are most easily calculated
by matrix arithmetic as

(1.8.1)

✓
pj pj�1

qj qj�1

◆
=

✓
a0 1
1 0

◆✓
a1 1
1 0

◆
. . .

✓
aj 1
1 0

◆

so that a/g = pk and b/g = qk, where g =gcd(a, b).

Exercise 1.8.1. Prove that this description of the Euclidean algorithm really works.

Exercise 1.8.2. (a) Show that p
j

q
j�1

� p
j�1

q
j

= (�1)j+1 for all j � 0.
(b) Explain how to use the Euclidean algorithm, along with (1.8.1), to determine, for given

positive integers a and b, an integer solution u, v to the equation au+ bv = gcd(a, b).

Exercise 1.8.3. With the notation as above, show that [a
k

, . . . , a
0

] = a/c for some integer c for
which 0 < c < a and bc ⌘ (�1)k (mod a).

Exercise 1.8.4. Prove that for every n � 1 we have
✓

F
n+1

F
n

F
n

F
n�1

◆

=

✓

1 1
1 0

◆

n

,

where F
n

is the nth Fibonacci number.

My favourite open question in this area is Zaremba’s conjecture: He conjectured
that there is an integer B � 1 such that for every integer n � 2 there exists a fraction
m/n, where m is an integer, 1  m  n�1, coprime with n, for which the continued
fraction m/n = [a0, a1, . . . , ak] has each ak  B. Calculations suggest one can take
B = 5.

1.9. Euclid matrices, and ideal transformations

In section 1.3 we used Euclid’s algorithm to transform the basis of the ideal I(85, 48),
to I(48, 37), and on, until we showed that it equals I(1, 0) = I(1). The transfor-
mation rested on the identity

85m+ 48n = 48m0 + 37n0, where m0 = m+ n, and n0 = n;

a transformation we can write as

�
m,n

�
!

�
m0, n0� =

�
m,n

�✓1 1
1 0

◆
.

The transformation of linear forms can then be seen by

48m0 +37n0 =
�
m0, n0�

✓
48
37

◆
=

�
m,n

�✓1 1
1 0

◆✓
48
37

◆
=

�
m,n

�✓85
48

◆
= 85m+48n.

The inverse map can be found simply by inverting the matrix:
✓
m0

n0

◆
!

✓
m
n

◆
=

✓
0 1
1 �1

◆✓
m0

n0

◆
.
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These linear transformations can be composed by multiplying the relevant matrices,
which are the same matrices that arise in the previous section, section 1.8. For
example, after three steps, the change is

�
m,n

�
!

�
m3, n3

�
=

�
m,n

�✓7 2
4 1

◆
,

so that 11m3 + 4n3 = 85m+ 48n.

Exercise 1.9.1. (a) With the notation of section 1.8, establish that xu
j

+ yu
j+1

= ma + nb
where the variables x and y are obtained from the variables m and n by a linear transfor-
mation.

(b) Deduce that I(u
j

, u
j+1

) = I(a, b) for j = 0, . . . , k.

1.10. The dynamics of the Euclidean algorithm

We now explain a dynamical perspective on the Euclidean algorithm, by focusing on
each individual transformation of the pair of numbers with which we work. In our
example, we began with the pair of numbers (85, 48), subtracted the smaller from
the larger to get (37, 48), and then swapped the order to obtain (48, 37). Now we
begin with the fraction x := 85/48; the first step transforms x ! y := x�1 = 37/48,
and the second transforms y ! 1/y = 48/37. The Euclidean algorithm can easily
be broken down into a series of steps of this form

85

48
! 37

48
! 48

37
! 11

37
! 37

11
! 26

11
! 15

11
! 4

11

! 11

4
! 7

4
! 3

4
! 4

3
! 1

3
! 3

1
! 2

1
! 1

1
! 0

1
.

It is possible that the map x ! x � 1 is repeated several times consecutively (for
example, as we went from 37/11 to 4/11), the number of times corresponding to the
quotient, [x]. On the other hand, the map y ! 1/y is not immediately repeated,
since repeating this map sends y back to y, which corresponds to swapping the
order of a pair numbers twice, sending the pair back to their original order.

These two linear maps correspond to our matrix transformations:

x ! x� 1 corresponds to

✓
1 �1
1 0

◆
, so that

✓
37
48

◆
=

✓
1 �1
1 0

◆✓
85
48

◆
;

and y ! 1/y corresponds to

✓
0 1
1 0

◆
, so that

✓
48
37

◆
=

✓
0 1
1 0

◆ ✓
37
48

◆
.

The Euclidean algorithm is therefore a series of transformations of the form x !
x � 1 and y ! 1/y, and defines a finite sequence of these transformations that
begins with any given positive rational number, and ends with 0. One can invert
that sequence of transformations, to transformations of the form x ! x + 1 and
y ! 1/y, to begin with 0, and to end at any given rational number.

Determinant 1 transformations. Foreshadowing later results, it is more useful
to develop a variant on the Euclidean algorithm in which the matrices of all of the
transformations have determinant 1. To begin with, we break each transformation
down into the two steps:
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• Beginning with the pair 85, 48 the first step is to subtract 1 times 48 from 85;
and in general we subtract q times b from a. This transformation is therefore
given by

✓
a
b

◆
!

✓
1 �q
0 1

◆✓
a
b

◆
, and notice that

✓
1 �q
0 1

◆
=

✓
1 1
0 1

◆�q

.

• The second step swaps the roles of 37(= 85 � 48) and 48, corresponding to
a matrix of determinant �1. Here we do something unintuitive which is to
change 48 to �48, so that the matrix has determinant 1:
✓
37
48

◆
!

✓
0 �1
1 0

◆✓
37
48

◆
, and more generally

✓
a
b

◆
!

✓
0 �1
1 0

◆✓
a
b

◆
.

One then sees that if g = gcd(a, b) and a/b = [a0, . . . , ak] then
✓
0
g

◆
=

✓
1 1
0 1

◆�a
k

✓
0 �1
1 0

◆✓
1 1
0 1

◆�a
k�1

· · ·
✓
0 �1
1 0

◆✓
1 1
0 1

◆�a
0

✓
a
b

◆
.

We write S :=

✓
1 1
0 1

◆
and T :=

✓
0 1
�1 0

◆
. Taking inverses here we get

✓
a
b

◆
= Sa

0TSa
1T · · ·Sa

k�1TSa
k

✓
0
g

◆
.

If a and b are coprime then this implies that

(1.10.1) Sa
0TSa

1T · · ·Sa
k�1TSa

k =

✓
c a
d b

◆

for some integers c and d. The left-hand side is the product of determinant one
matrices, and so the right-hand side also has determinant one; that is, cb� ad = 1.
This is therefore an element of SL(2,Z), the subgroup (under multiplication) of
2-by-2 integer matrices of determinant one; more specifically

SL(2,Z) :=
⇢✓

↵ �
� �

◆
: ↵,�, �, � 2 Z, ↵� � �� = 1

�
.

Theorem 1.2. Each matrix in SL(2,Z) can be represented as Se
1T f

1 · · ·Se
rT f

r

for integers e1, f1, . . . , er, fr.

Proof. Suppose that we are given

✓
x a
y b

◆
2 SL(2,Z). Taking determinants we

see that bx�ay = 1. Therefore gcd(a, b) = 1, and so above we saw how to construct
an element of SL(2,Z) with the same last column. In Theorem 3.5 we will show
that every other integer solution to bx� ay = 1 is given by x = c�ma, y = d�mb
for some integer m. Therefore

✓
x a
y b

◆
=

✓
c a
d b

◆✓
1 0

�m 1

◆
.

One can easily verify that

T�1 =

✓
0 �1
1 0

◆
, so that T�1ST =

✓
1 0
�1 1

◆
,
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and therefore ✓
1 0

�m 1

◆
= (T�1ST )m = T�1SmT.

Combining these last two statements together with (1.10.1) completes the proof of
the theorem. ⇤


