At the moment the function $\log_p(z)$ is defined only when $|z - 1|_p < 1$. For any $\beta \in \mathbb{Z}_p$ with $|\beta|_p = 1$, there exists an integer b with $b \equiv \beta \pmod{p}$ and $b \not\equiv 0 \pmod{p}$. Therefore, by Fermat's little theorem, $\beta^{p-1} \equiv b^{p-1} \equiv 1 \pmod{p}$, and so $\log_p(\beta^{p-1})$ is well-defined. Taking our lead from exercise 16.6.5(c) we therefore define

$$\log_p(\beta) := \frac{\log_p(\beta^{p-1})}{p-1} = \lim_{k \to \infty} \frac{\beta^{p^k(p-1)} - 1}{p^k(p-1)}.$$

Exercise 16.6.6. Assume that $\alpha, \beta \in \mathbb{Z}_p$.

- (a) Prove that $\log_p(-\alpha) = \log_p(\alpha)$.
- (b) Prove that $\log_p(\alpha\beta) = \log_p(\alpha) + \log_p(\beta)$.

Any $\gamma \in \mathbb{Z}_p$ can be written in the form $\gamma = p^e \beta$ where $|\beta|_p = 1$, so we define³ $\log_p(\gamma) = e \log_p(p) + \log_p(\beta).$

16.7. The *p*-adic dilogarithm

For each $k \geq 1$, define

$$\mathcal{L}_k(x) := \sum_{m \ge 1} \frac{x^m}{m^k}.$$

The case k = 2 is the dilogarithm function.

Exercise 16.7.1. (a) Prove that the sum defining $\mathcal{L}_k(x)$ converges for all $x \in \mathbb{C}$ with $|x|_{\infty} \leq 1$ for all $k \ge 2$, and for $|x|_p < 1$ in the *p*-adics. (b) Establish that $\mathcal{L}_k(x) + \mathcal{L}_k(-x) = 2^{1-k} \mathcal{L}_k(x^2)$ when $|x|_p < 1$.

Theorem 16.5. If $|1 - z|_p < 1$ then

(16.7.1)
$$\mathcal{L}_2(1-z) + \mathcal{L}_2(1-z^{-1}) = -\frac{1}{2}(\log_p z)^2.$$

In particular $\mathcal{L}_2(2) = 0$ in the 2-adics.

Proof. For $|x|_p < 1$, we have

$$\frac{\mathrm{d}\mathcal{L}_2(x)}{\mathrm{d}x} = \frac{1}{x} \sum_{m \ge 1} \frac{x^m}{m} = -\frac{\log_p(1-x)}{x} ,$$

and so, by the chain rule, we have

$$\frac{d}{dz}(\mathcal{L}_2(1-z) + \mathcal{L}_2(1-z^{-1})) = -\mathcal{L}_2'(1-z) + z^{-2}\mathcal{L}_2'(1-z^{-1})$$
$$= \frac{\log_p(z)}{1-z} - z^{-2}\frac{\log_p(z^{-1})}{1-z^{-1}} = -\frac{\log_p z}{z}.$$

Integrating yields $\mathcal{L}_2(1-z) + \mathcal{L}_2(1-z^{-1}) = -\frac{1}{2}(\log_p z)^2 + C$ for some constant C. Taking z = 1 we see that C = 0, yielding (16.7.1).

Replacing z by z^2 , we obtain

 $\mathcal{L}_2(1-z^2) + \mathcal{L}_2(1-z^{-2}) = -2(\log_p z)^2 = 4(\mathcal{L}_2(1-z) + \mathcal{L}_2(1-z^{-1})).$ When p = 2 we may take z = -1 in this equation and so $8\mathcal{L}_2(2) = 2\mathcal{L}_2(0) = 0$. \Box **Exercise 16.7.2.** Let p = 2 and $|z - 1|_2 < 1$.

³We can select any value for $\log_p(p)$; we do not have to let it be 1.

- (a) Prove that $\mathcal{L}_2(1-z) + \mathcal{L}_2(1+z) = \frac{1}{2}\mathcal{L}_2(1-z^2) + C$ for some constant C. (b) Prove that C = 0 using (16.7.1).
- (c) Deduce (again) that $\mathcal{L}_2(2) = 0$.

We have now seen that

$$\sum_{n \ge 1} \frac{2^n}{n} = \sum_{n \ge 1} \frac{2^n}{n^2} = 0$$

in the 2-adics. It is interesting to see how rapidly this convergence happens. If $n\geq N\geq 2^k$ then $v_2(2^n/n)\geq 2^k-k$ so that

$$\sum_{n < N} \frac{2^n}{n} = -\sum_{n \ge N} \frac{2^n}{n} \equiv 0 \pmod{2^{2^k - k}}$$

and similarly

$$\sum_{n < N} \frac{2^n}{n^2} \equiv 0 \pmod{2^{2^k - 2k}}.$$

It looks like there might be a pattern here. How about $\sum_{n\geq 1} 2^n/n^3$? Unfortunately the n = 4 term gives the unique maximum, 2^2 , of $|2^n/n^3|_2$, and so $|\sum_{n\geq 1} 2^n/n^3|_2 = 1$ 4, not 0.

Exercise 16.7.3. Prove that if $|x|_p, |y|_p < 1$ then

$$\mathcal{L}_2(x) + \mathcal{L}_2(y) - \mathcal{L}_2(xy) - \mathcal{L}_2\left(\frac{x(1-y)}{1-xy}\right) - \mathcal{L}_2\left(\frac{y(1-x)}{1-xy}\right) = \log_p\left(\frac{1-x}{1-xy}\right)\log_p\left(\frac{1-y}{1-xy}\right).$$

Further reading on *p*-adics

[1] Richard M. Hill, Introduction to number theory, World Scientific, Singapore (2018), chapter 4.