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At the moment the function logp(z) is defined only when |z � 1|p < 1. For
any � 2 Zp with |�|p = 1, there exists an integer b with b ⌘ � (mod p) and b 6⌘ 0
(mod p). Therefore, by Fermat’s little theorem, �p�1 ⌘ bp�1 ⌘ 1 (mod p), and
so logp(�

p�1) is well-defined. Taking our lead from exercise 16.6.5(c) we therefore
define

logp(�) :=
logp(�

p�1)

p� 1
= lim

k!1

�pk(p�1) � 1

pk(p� 1)
.

Exercise 16.6.6. Assume that ↵,� 2 Z
p

.
(a) Prove that log

p

(�↵) = log
p

(↵).
(b) Prove that log

p

(↵�) = log
p

(↵) + log
p

(�).

Any � 2 Zp can be written in the form � = pe� where |�|p = 1, so we define3

logp(�) = e logp(p) + logp(�).
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For each k � 1, define

Lk(x) :=
X

m�1

xm

mk
.

The case k = 2 is the dilogarithm function.

Exercise 16.7.1. (a) Prove that the sum defining L
k

(x) converges for all x 2 C with |x|1  1
for all k � 2, and for |x|

p

< 1 in the p-adics.
(b) Establish that L

k

(x) + L
k

(�x) = 21�kL
k

(x2) when |x|
p

< 1.

Theorem 16.5. If |1� z|p < 1 then

(16.7.1) L2(1� z) + L2(1� z�1) = �1

2
(logp z)

2.

In particular L2(2) = 0 in the 2-adics.

Proof. For |x|p < 1, we have

dL2(x)

dx
=

1

x

X

m�1

xm

m
= �

logp(1� x)

x
,

and so, by the chain rule, we have

d

dz
(L2(1� z) + L2(1� z�1)) = �L0

2(1� z) + z�2L0
2(1� z�1)

=
logp(z)

1� z
� z�2 logp(z

�1)

1� z�1
= �

logp z

z
.

Integrating yields L2(1� z) +L2(1� z�1) = � 1
2 (logp z)

2 +C for some constant C.
Taking z = 1 we see that C = 0, yielding (16.7.1).

Replacing z by z2, we obtain

L2(1� z2) + L2(1� z�2) = �2(logp z)
2 = 4(L2(1� z) + L2(1� z�1)).

When p = 2 we may take z = �1 in this equation and so 8L2(2) = 2L2(0) = 0. ⇤
Exercise 16.7.2. Let p = 2 and |z � 1|

2

< 1.

3We can select any value for log
p

(p); we do not have to let it be 1.
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(a) Prove that L
2

(1� z) + L
2

(1 + z) = 1

2

L
2

(1� z2) + C for some constant C.
(b) Prove that C = 0 using (16.7.1).
(c) Deduce (again) that L

2

(2) = 0.

We have now seen that
X

n�1

2n

n
=

X

n�1

2n

n2
= 0

in the 2-adics. It is interesting to see how rapidly this convergence happens. If
n � N � 2k then v2(2n/n) � 2k � k so that

X

n<N

2n

n
= �

X

n�N

2n

n
⌘ 0 (mod 22

k�k)

and similarly X

n<N

2n

n2
⌘ 0 (mod 22

k�2k).

It looks like there might be a pattern here. How about
P

n�1 2
n/n3? Unfortunately

the n = 4 term gives the unique maximum, 22, of |2n/n3|2, and so |
P

n�1 2
n/n3|2 =

4, not 0.

Exercise 16.7.3. Prove that if |x|
p

, |y|
p

< 1 then

L
2

(x) + L
2

(y)� L
2

(xy)� L
2

✓

x(1� y)

1� xy

◆

� L
2

✓

y(1� x)

1� xy

◆

= log
p

✓

1� x

1� xy

◆

log
p

✓

1� y

1� xy

◆

.

Further reading on p-adics
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