At the moment the function $\log _{p}(z)$ is defined only when $|z-1|_{p}<1$. For any $\beta \in \mathbb{Z}_{p}$ with $|\beta|_{p}=1$, there exists an integer b with $b \equiv \beta(\bmod p)$ and $b \not \equiv 0$ $(\bmod p)$. Therefore, by Fermat's little theorem, $\beta^{p-1} \equiv b^{p-1} \equiv 1(\bmod p)$, and so $\log _{p}\left(\beta^{p-1}\right)$ is well-defined. Taking our lead from exercise 16.6.5(c) we therefore define

$$
\log _{p}(\beta):=\frac{\log _{p}\left(\beta^{p-1}\right)}{p-1}=\lim _{k \rightarrow \infty} \frac{\beta^{p^{k}(p-1)}-1}{p^{k}(p-1)}
$$

Exercise 16.6.6. Assume that $\alpha, \beta \in \mathbb{Z}_{p}$.
(a) Prove that $\log _{p}(-\alpha)=\log _{p}(\alpha)$.
(b) Prove that $\log _{p}(\alpha \beta)=\log _{p}(\alpha)+\log _{p}(\beta)$.

Any $\gamma \in \mathbb{Z}_{p}$ can be written in the form $\gamma=p^{e} \beta$ where $|\beta|_{p}=1$, so we define ${ }^{3}$

$$
\log _{p}(\gamma)=e \log _{p}(p)+\log _{p}(\beta)
$$

16.7. The p-adic dilogarithm

For each $k \geq 1$, define

$$
\mathcal{L}_{k}(x):=\sum_{m \geq 1} \frac{x^{m}}{m^{k}}
$$

The case $k=2$ is the dilogarithm function.
Exercise 16.7.1. (a) Prove that the sum defining $\mathcal{L}_{k}(x)$ converges for all $x \in \mathbb{C}$ with $|x|_{\infty} \leq 1$ for all $k \geq 2$, and for $|x|_{p}<1$ in the p-adics.
(b) Establish that $\mathcal{L}_{k}(x)+\mathcal{L}_{k}(-x)=2^{1-k} \mathcal{L}_{k}\left(x^{2}\right)$ when $|x|_{p}<1$.

Theorem 16.5. If $|1-z|_{p}<1$ then

$$
\begin{equation*}
\mathcal{L}_{2}(1-z)+\mathcal{L}_{2}\left(1-z^{-1}\right)=-\frac{1}{2}\left(\log _{p} z\right)^{2} \tag{16.7.1}
\end{equation*}
$$

In particular $\mathcal{L}_{2}(2)=0$ in the 2 -adics.
Proof. For $|x|_{p}<1$, we have

$$
\frac{\mathrm{d} \mathcal{L}_{2}(x)}{\mathrm{d} x}=\frac{1}{x} \sum_{m \geq 1} \frac{x^{m}}{m}=-\frac{\log _{p}(1-x)}{x}
$$

and so, by the chain rule, we have

$$
\begin{aligned}
\frac{d}{d z}\left(\mathcal{L}_{2}(1-z)+\mathcal{L}_{2}\left(1-z^{-1}\right)\right) & =-\mathcal{L}_{2}^{\prime}(1-z)+z^{-2} \mathcal{L}_{2}^{\prime}\left(1-z^{-1}\right) \\
& =\frac{\log _{p}(z)}{1-z}-z^{-2} \frac{\log _{p}\left(z^{-1}\right)}{1-z^{-1}}=-\frac{\log _{p} z}{z}
\end{aligned}
$$

Integrating yields $\mathcal{L}_{2}(1-z)+\mathcal{L}_{2}\left(1-z^{-1}\right)=-\frac{1}{2}\left(\log _{p} z\right)^{2}+C$ for some constant C.
Taking $z=1$ we see that $C=0$, yielding (16.7.1).
Replacing z by z^{2}, we obtain

$$
\mathcal{L}_{2}\left(1-z^{2}\right)+\mathcal{L}_{2}\left(1-z^{-2}\right)=-2\left(\log _{p} z\right)^{2}=4\left(\mathcal{L}_{2}(1-z)+\mathcal{L}_{2}\left(1-z^{-1}\right)\right)
$$

When $p=2$ we may take $z=-1$ in this equation and so $8 \mathcal{L}_{2}(2)=2 \mathcal{L}_{2}(0)=0$.
Exercise 16.7.2. Let $p=2$ and $|z-1|_{2}<1$.

[^0](a) Prove that $\mathcal{L}_{2}(1-z)+\mathcal{L}_{2}(1+z)=\frac{1}{2} \mathcal{L}_{2}\left(1-z^{2}\right)+C$ for some constant C.
(b) Prove that $C=0$ using (16.7.1).
(c) Deduce (again) that $\mathcal{L}_{2}(2)=0$.

We have now seen that

$$
\sum_{n \geq 1} \frac{2^{n}}{n}=\sum_{n \geq 1} \frac{2^{n}}{n^{2}}=0
$$

in the 2 -adics. It is interesting to see how rapidly this convergence happens. If $n \geq N \geq 2^{k}$ then $v_{2}\left(2^{n} / n\right) \geq 2^{k}-k$ so that

$$
\sum_{n<N} \frac{2^{n}}{n}=-\sum_{n \geq N} \frac{2^{n}}{n} \equiv 0 \quad\left(\bmod 2^{2^{k}-k}\right)
$$

and similarly

$$
\sum_{n<N} \frac{2^{n}}{n^{2}} \equiv 0 \quad\left(\bmod 2^{2^{k}-2 k}\right)
$$

It looks like there might be a pattern here. How about $\sum_{n \geq 1} 2^{n} / n^{3}$? Unfortunately the $n=4$ term gives the unique maximum, 2^{2}, of $\left|2^{n} / n^{3}\right|_{2}$, and so $\left|\sum_{n \geq 1} 2^{n} / n^{3}\right|_{2}=$ 4 , not 0 .

Exercise 16.7.3. Prove that if $|x|_{p},|y|_{p}<1$ then
$\mathcal{L}_{2}(x)+\mathcal{L}_{2}(y)-\mathcal{L}_{2}(x y)-\mathcal{L}_{2}\left(\frac{x(1-y)}{1-x y}\right)-\mathcal{L}_{2}\left(\frac{y(1-x)}{1-x y}\right)=\log _{p}\left(\frac{1-x}{1-x y}\right) \log _{p}\left(\frac{1-y}{1-x y}\right)$.

Further reading on p-adics

[1] Richard M. Hill, Introduction to number theory, World Scientific, Singapore (2018), chapter 4.

[^0]: ${ }^{3}$ We can select any value for $\log _{p}(p)$; we do not have to let it be 1 .

