Appendix 14A: Gauss sums

For a given Dirichlet character \(\chi \) (mod \(q \)) we define the Gauss sum, \(g(\chi) \), by

\[
g(\chi) := \sum_{a=1}^{q} \chi(a)e^{2i\pi a/q}.
\]

Note that the summand \(\chi(a)e^{2i\pi a/q} \) depends only on the value of \(a \) (mod \(q \)). Gauss sums play an important role in number theory and have some beautiful properties.

14.7. Identities for Gauss sums

By making the change of variable \(a \equiv nb \) (mod \(q \)) for some integer \(n \) with \((n, q) = 1 \), the variable \(b \) runs through a complete system of residues mod \(q \) as \(a \) does. Therefore we obtain the surprising identity

\[
\sum_{b=1}^{q} \chi(b)e^{2i\pi nb/q} = \overline{\chi(n)} \sum_{b=1}^{q} \chi(nb)e^{2i\pi nb/q} = \overline{\chi(n)}g(\chi).
\]

Therefore if \(q \) is prime and \(\chi \) is non-principal then

\[
\phi(q)|g(\chi)|^2 = \sum_{1 \leq n \leq q \atop (n,q)=1} |\overline{\chi(n)}g(\chi)|^2 = \sum_{n=0}^{q-1} \sum_{b=1}^{q} \chi(b)e^{2i\pi nb/q}^2,
\]

since the \(n = 0 \) sum equals \(\sum_{b=1}^{q} \chi(b) = 0 \). Expanding the square we obtain

\[
\sum_{b=1}^{q} \chi(b) \sum_{c=1}^{q} \overline{\chi(c)} \sum_{n=0}^{q-1} e^{2i\pi n(b-c)/q} = q \sum_{b=1}^{q} |\chi(b)|^2 = q\phi(q),
\]

since \(\sum_{n=0}^{q-1} e^{2i\pi na/q} = 0 \) unless \(q \) divides \(a \). Therefore we have proved that

\[
|g(\chi)|^2 = q.
\]
Appendix 14A: Gauss sums

To better use this we have
\[g(\chi) = \sum_{a=1}^{q} \overline{\chi}(a)e^{-2\pi i a/q} = \chi(-1)g(\overline{\chi}) \]
by (14.7.1), so that \(g(\chi)g(\overline{\chi}) = \chi(-1)|g(\chi)|^2 = \chi(-1)q \). In particular if \(\chi = (\cdot/q) \), so that \(\chi = \overline{\chi} \) then
\[g((\cdot/q))^2 = (-1/q)q. \]
Taking the square root, it remains to determine which sign gives the value of \(g((\cdot/q)) \). It took Gauss four years to figure this out, so we will simply state his result:

\[(14.7.2) \quad g((\cdot/q)) = \begin{cases} \sqrt{q} & \text{if } q \equiv 1 \pmod{4}; \\ i\sqrt{q} & \text{if } q \equiv 3 \pmod{4}. \end{cases} \]

Another proof of the law of quadratic reciprocity. Let \(q^* = (-1/q)q \) and \(g = g((\cdot/q)) \). Now
\[g^p = \left(\sum_{a=1}^{q} \left(\frac{a}{q} \right) e^{2\pi i a/q} \right)^p \equiv \sum_{a=1}^{q} \left(\frac{a}{q} \right)^p e^{2\pi i ap/q} \pmod{p}, \]
as \((x_1 + \cdots + x_q)^p \equiv x_1^p + \cdots + x_q^p \pmod{p} \). Then, by (14.7.1), we have
\[g^p = \sum_{a=1}^{q} \left(\frac{a}{q} \right) e^{2\pi i ap/q} = \left(\frac{p}{q} \right) g \pmod{p}. \]
We may divide through by \(g \) as \((g^2, p) = (q, p) = 1 \), so that
\[\left(\frac{p}{q} \right) \equiv g^{p-1} = (g^2)^{(p-1)/2} = (q^*)^{(p-1)/2} \]
\[= (-1)^{\frac{p-1}{2} + \frac{p+1}{2}} q^{(p-1)/2} \equiv (-1)^{\frac{p-1}{2} + \frac{p+1}{2}} \left(\frac{q}{p} \right) \pmod{p}, \]
by Euler’s criterion. Both sides are integers equal to 1 or \(-1\) and differ by a multiple of \(p \), which is \(\geq 3 \), and so they must be equal. That is, we obtain Theorem 8.5, the law of quadratic reciprocity.

14.8. Dirichlet \(L \)-functions at \(s = 1 \)

We now use (14.7.1) to try to find a simple expression for \(L(1, \chi) \). We again let \(q \) be prime so that \(\sum_{b=1}^{q} \chi(b) = 0 \), and therefore the identity (14.7.1) holds for all integers \(n \) (not just those \(n \) coprime to \(q \)). Assuming that there are no convergence issues in swapping the orders of summation, we have
\[g(\chi)L(1, \chi) = \sum_{n \geq 1} \frac{g(\chi)\overline{\chi}(n)}{n} = \sum_{n \geq 1} \frac{\sum_{b=1}^{q-1} \chi(b)e^{2\pi i nb/q}}{n} = \sum_{b=1}^{q-1} \chi(b) \sum_{n \geq 1} \frac{e^{2\pi i nb/q}}{n} \]
The sum over \(n \) is the Taylor series for \(-\log(1 - t)\) with \(t = e^{2\pi i nb/q} \) (since each \(t \neq 1 \)). Therefore
\[g(\chi)L(1, \chi) = -\sum_{b=1}^{q-1} \chi(b) \log(1 - e^{2\pi i nb/q}). \]
Exercise 14.8.1. (a) Prove that
\[\arg(1 - e^{i\theta}) \in (-\pi, \pi). \]
(b) Deduce that if \(0 < \theta < 2\pi \) then \(\log(1 - e^{i\theta}) - \log(1 - e^{-i\theta}) = i(\theta - \pi) \in (-\pi, \pi) \).

Now assume that \(\chi(-1) = -1 \) and add the \(b \) and \(q - b \) terms in the sum above, so that by the last exercise we have
\[
2g(\chi)L(1, \chi) = - \sum_{b=1}^{q-1} \chi(b)(\log(1 - e^{2i\pi b/q}) - \log(1 - e^{-2i\pi b/q})) = -i \sum_{b=1}^{q-1} \chi(b)(2\pi b/q - \pi).
\]

The second sum on the right-hand side is 0, and so multiplying through by \(-g(\chi)\), we obtain
\[
qL(1, \chi) = \frac{i\pi g(\chi)}{q} \sum_{b=1}^{q-1} \chi(b)b
\]
as \(-g(\chi)g(\chi) = q\).

Now let \(\chi = (\cdot/q) \) with prime \(q \equiv 3 \pmod{4} \) where \(q > 3 \), so that \(\chi = \chi \). Dirichlet’s class number formula (given in section 12.15 of appendix 12D with \(d = -q \)) reads \(\pi h(-q) = \sqrt{q}L(1, \chi) \) and therefore the last displayed formula becomes
\[
h(-q) = -\frac{1}{q} \sum_{b=1}^{q-1} \chi(b)b.
\]
since \(g((\cdot/q)) = i\sqrt{q} \) by (14.7.2). This is precisely Jacobi’s conjecture, stated as (12.15.1).

14.9. Jacobi sums

Let \(\chi \) and \(\psi \) be characters mod \(q \) and define the Jacobi sum
\[
\begin{align*}
j(\chi, \psi) := & \sum_{r, s \pmod{q}} \chi(r)\psi(s). \\
& r + s \equiv 1 \pmod{q}
\end{align*}
\]

To evaluate this sum we state the condition “\(r + s \equiv 1 \pmod{q} \)” in term of a sum, so that
\[
\begin{align*}
j(\chi, \psi) = & \sum_{r, s \pmod{q}} \chi(r)\psi(s) \cdot \frac{1}{q} \sum_{k=0}^{q-1} e^{2i\pi \frac{k}{q}(r+s-1)} \\
= & \frac{1}{q} \sum_{k=0}^{q-1} e^{-2i\pi \frac{k}{q}} \left(\sum_{r \pmod{q}} \chi(r)e^{2i\pi \frac{kr}{q}} \right) \left(\sum_{s \pmod{q}} \psi(s)e^{2i\pi \frac{ks}{q}} \right) \\
= & \frac{1}{q} \sum_{k=0}^{q-1} e^{-2i\pi \frac{k}{q}} \left(\chi(k)g(\chi) \right) \left(\psi(k)g(\psi) \right) \\
= & \frac{\chi(1)}{q} g(\chi)g(\psi).
\end{align*}
\]
If \(q \) is prime and each of \(\chi, \psi \) and \(\overline{\chi}\psi \) is non-principal, then we know that \(|g(\overline{\chi}\psi)| = |g(\chi)| = |g(\psi)| = \sqrt{q} \), so that \(|j(\chi, \psi)| = q \). By its definition \(j(\chi, \psi) \) is an algebraic integer, and belongs to the field defined by the values of \(\chi \) and \(\psi \).
14.10. The diagonal cubic, revisited

Let p be a prime $\equiv 1 \pmod{3}$. Since the group of characters mod p is isomorphic to the multiplicative group of reduced residues mod p, we know that there are two characters $\chi, \chi^2 \pmod{p}$ of order 3. We can establish the analogy to Corollary 8.1.1 for cubic residues:

Exercise 14.10.1. Prove that if $p - a$ then

$$\# \{x \pmod{p} : ax^3 \equiv u \pmod{p}) = 1 + \chi(a^{-1}u) + \chi^2(a^{-1}u).$$

By exercise 14.10.1, $N(a, b, c)$ equals the sum over triples $u, v, w \pmod{p}$ for which $u + v + w \equiv 0 \pmod{p}$ of

$$(1 + \chi(a^{-1}u) + \chi^2(a^{-1}u))(1 + \chi(b^{-1}v) + \chi^2(b^{-1}v))(1 + \chi(c^{-1}w) + \chi^2(c^{-1}w)).$$

We again multiply the triples out. The first product, $1 \cdot 1 \cdot 1$, sums to p^2. Any other product that contains a 1 sums to 0, since the remaining variables can be summed independently (and each independent sum is of the shape $\sum_i \chi(t) = 0$). Therefore

$$N(a, b, c) = p^2 + \sum_{1 \leq i, j, k \leq 2} \sum_{u, v, w \pmod{p}} \sum_{u+v+w \equiv 0 \pmod{p}} \chi(i(a^{-1}u))\chi^2(b^{-1}v)\chi(k(c^{-1}w)).$$

We may assume $u \not\equiv 0 \pmod{p}$ since those summands equal 0. Therefore we can write $v = -ur, w = -us$ and separate out the sum $\sum_u \chi(i(a^{-1}u))\chi^2(b^{-1}v)\chi(k(c^{-1}w))$. This equals 0 when 3 does not divide $i + j + k$. This therefore leaves us with only the terms where $i = j = k$, in which case the sum over u equals $p - 1$. For $i = j = k = 1$ we have

$$\sum_{u,v,w \pmod{p}} \chi(uvw) = (p - 1) \sum_{r,s \pmod{p}} \chi(rs) = (p - 1)j(\chi, \chi),$$

and likewise for χ^2. Therefore

$$N(a, b, c) = p^2 + (p - 1)(\overline{\chi}(d)j(\chi, \chi) + \chi(d)j(\overline{\chi}, \overline{\chi})).$$

where $d = abc$. In section 14.9 we proved that $j(\chi, \chi)$ is an algebraic integer in $\mathbb{Q}(\frac{1 + \sqrt{-3}}{2})$ of norm p, so we can write $\overline{\chi}(d)j(\chi, \chi) = \frac{u + \sqrt{3}v}{2}$ with $u \equiv v \pmod{2}$, and $u^2 + 3v^2 = 4p$. We therefore recover the result,

$$N(a, b, c) = p^2 + (p - 1)u,$$

that we established in section 14.4. Moreover by calculating $j(\chi, \chi)$ we can determine the sign of b.

Appendix 14A: Gauss sums