Concours Putnam

Atelier de Pratique Le jeudi, 21 novembre 12h30-13h30 5448 Pav. André Aisenstadt

Fonctions et Integrals

1. Let n be a positive integer, and define

$$
f(n) = 1! + 2! + \ldots + n!.
$$

Find polynomials $P(x)$ and $Q(x)$ such that

$$
f(n + 2) = P(n)f(n + 1) + Q(n)f(n)
$$

for all $n \geq 1$.

Solution: This is (Putnam '84 B1) We have
\n
$$
f(n+2) - f(n+1) = (n+2)! = (n+2)(n+1)! = (n+2)(f(n+1) - f(n)),
$$
\nhence
\n
$$
f(n+2) = (n+2)(f(n+1) - f(n)) + f(n+1) = (n+3)f(n+1) - (n+2)f(n),
$$
\nand we can take $P(x) = x + 3, Q(x) = -x - 2$.

2. Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that $f(nm) = f(n)f(m)$, and such that

$$
\lim_{n \to \infty} \frac{\log(f(n))}{\log n} = 1
$$

Solution: We will see that $f(n) = n$. Suppose the opposite. There is an m such that $\frac{f(m)}{m} = \alpha \neq 1$. Now we take the limit over the subsequence m^k with $k \to \infty$ and m fixed. Thus

$$
1 = \lim_{k \to \infty} \frac{\log(f(m^k))}{\log(m^k)} = \frac{\log(\alpha m)}{\log m} = 1 + \frac{\log \alpha}{\log m}
$$

and we get a contradiction if α si different from 1.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that for every x,

$$
f(x+1) = \frac{1 + f(x)}{1 - f(x)}
$$

Prove that f is periodic.

Solution: We have $f(x+2) = -1/f(x)$, hence $f(x+4) = f(x)$, and f is periodic with period 4.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous, with $f(x)f(f(x)) = 1$ for all $x \in \mathbb{R}$. If $f(1000) = 999$, find $f(500)$.

Solution: First notice that $f(1000)f(999) = 1$ implies that $f(999) = \frac{1}{999}$. Since $f(1000) = 999$, and the function is continuous, we conclude that there is a value a for which $f(a) = 500$. Then $f(500) f(a) = 1$ so that $f(500) = \frac{1}{f(a)} = \frac{1}{500}$.

- 5. Compute the following integrals
	- 1. \int_0^∞ xdx $e^{x}-1$ 2. \int_0^1 $ln(1+x)$ $rac{1+x}{x}dx$

Solution:

1.

$$
\int_0^{\infty} \frac{x dx}{e^x - 1} = \int_0^{\infty} \frac{xe^{-x} dx}{1 - e^{-x}} = \int_0^{\infty} xe^{-x} \left(\sum_{k=0}^{\infty} e^{-kx}\right) dx.
$$

Now use parts to see that for $\alpha < 0$, $\int_0^\infty x e^{\alpha x} dx = \frac{x e^{\alpha x}}{\alpha}$ $\frac{e^{\alpha x}}{\alpha}\Big|_0^\infty - \int_0^\infty$ $e^{\alpha x}$ $rac{\alpha x}{\alpha}dx = \frac{1}{\alpha^2}$ $\overline{\alpha^2}$ Thus we obtain

$$
\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} = \zeta(2).
$$

2.

$$
\int_0^1 \frac{\ln(1+x)}{x} dx = \int_0^1 - \sum_{k=1}^\infty \frac{(-1)^k x^{k-1}}{k} dx = \sum_{k=1}^\infty (-1)^{k-1} \int_0^1 \frac{x^{k-1}}{k} dx
$$

$$
= \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k^2}
$$

.

Notice that
\n
$$
\zeta(2) + \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k^2} + \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}
$$
\n
$$
= 2 \sum_{k=1, k \text{even}}^{\infty} \frac{1}{k^2} = \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{1}{2} \zeta(2)
$$
\nThen\n
$$
\int_0^1 \frac{\ln(1+x)}{x} dx = \frac{\zeta(2)}{2}
$$

6. Let $f \in C(0,\infty)$ satisfy $\int_0^1 f^2 < \infty$. Define $\psi(x) = \frac{1}{x} \int_0^x f(t) dt$. Prove that for all $T > 0$,

$$
\int_0^T \psi(x)^2 dx \le 2 \int_0^T f(x)\psi(x) dx.
$$

Solution: Consider

$$
I = \int_0^T \psi(x)^2 dx = -\int_0^T \left(\frac{1}{x}\right)' \left(\int_0^x f(t) dt\right)^2 dx.
$$

Integrating by parts we get

$$
I = 2 \int_0^T f(x) \frac{1}{x} \left(\int_0^x f(t) dt \right) dx - \frac{1}{x} \left(\int_0^x f(t) dt \right)^2 \Big|_0^T
$$

By square integrability of f and Cauchy-Schwartz, we learn that $\left(\int_0^x f(t)dt\right)^2 \leq Cx^2$ for $x \leq 1$, and so

$$
\frac{1}{x} \left(\int_0^x f(t) dt \right)^2 \Big|_0^T = -\frac{1}{T} \left(\int_0^T f \right)^2 \le 0.
$$

Thus $I \leq 2 \int_0^t f(x) \psi(x) dx$.

7. Prove that \int_0^1 $\frac{dx}{x^x} = 1 + \frac{1}{2^2} + \frac{1}{3^3}$ $\frac{1}{3^3} + \frac{1}{4^4}$ $\frac{1}{4^4} + \ldots$ Solution: \int_0^1 0 dx $\frac{dx}{x^x} = \int_0^1$ 0 $e^{-x \ln x} dx = \int_0^1$ 0 \sum^{∞} $k=0$ $(-1)^k x^k \ln^k x$ $k!$ dx Let $I_k = \int_0^1 x^k \ln^k x dx$. Then $I_k =$ x^{k+1} $k+1$ $\ln^k x$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 1 0 \int_0^1 0 kx^k $k+1$ $\ln^{k-1} x dx$ = − kx^{k+1} $(k+1)^2$ $\ln^{k-1} x$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 1 0 $+$ \int_1^1 $\boldsymbol{0}$ $k(k-1)x^k$ $(k+1)^2$ $\ln^{k-2} x dx$ $... = (-1)^k \int_0^1$ 0 $k!x^k$ $(k + 1)^k$ $dx = (-1)^k \frac{k!}{(k-1)!}$ $\frac{k!}{(k+1)^{k+1}}$. Thus we get \int_0^1 0 dx $\frac{dx}{x^x} = \sum_{k=0}^{\infty}$ $_{k=0}$ 1 $(k+1)^{k+1}$

8. Prove or disprove the following statement: If F is a finite set with two or more elements, then there exists a binary operation $*$ on F such that for all x, y, z in F,

1. $x * z = y * z$ implies $x = y$ (right cancellation holds), and

2. $x * (y * z) \neq (x * y) * z$ (no case of associativity holds).

Solution: This is (Putnam 84, B3) The statement is true. Let φ any bijection on F with no fixed points $(\varphi(x) \neq x$ for every x), and set $x * y = \varphi(x)$. Then

- 1. $x * z = y * z$ is equivalent to $\varphi(x) = \varphi(y)$, and this implies $x = y$ because φ is a bijection.
- 2. We have $x * (y * z) = \varphi(x)$ and $(x * y) * z = \varphi(\varphi(x))$, which cannot be equal because that would imply than $\varphi(x)$ is a fixed point of φ .