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Binômes

Binomial theorem

n∑
k=0

(
n

k

)
xk = (1 + x)n n = 1, 2 . . . .

Binomial series

∞∑
k=0

(
α

k

)
xk = (1 + x)α |x| < 1, α any real number

Pascal’s identity(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
for k, n positive integers

1. Compute the following

1.
∑n

k=0

(
n
k

)
2.

∑n
k=0(−1)k

(
n
k

)
3.

∑2n
k=0(−1)kkn

(
2n
k

)
4.

∑
k=0

(
n
k

)2
5.

∑n
k=0

1
k+1

(
n
k

)
6.

∑r
k=0

(
m
k

)(
n

r−k

)
7.

∑n
m=0

(
m
k

)
8.

∑n
k=0

(mk)
(nk)

n ≥ m

9.
∑n

k=0

(
2k
k

)(
2n−2k
n−k

)
Solution:

1. 2n. Interpret the sum as the number of subsets of an n-element set or apply
the binomial theorem with x = 1.

2. 1 if n = 0 and 0 if n ≥ 1. Apply the binomial theorem with x = −1.
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3. 0 if n ≥ 1.

Write

f(x) = (1− ex)2n =
2n∑
k=0

(−1)k
(
2n

k

)
ekx

differentiate n times and evaluate in x = 0. (In fact, it works for any r < 2n)

4.
(
2n
n

)
. Write the term as

(
n
k

)(
n

n−k

)
and apply item 6 (Vandermonde’s identity).

5. 2n+1−1
n+1

. Use that 1
k+1

(
n
k

)
= 1

n+1

(
n+1
k+1

)
. Or start from the Binomial theorem and

integrate with x between 0 and 1.

6.
(
m+n
r

)
. This is the Vandermonde identity. Count the number of ways to form

a group of r people from a set of m men and n women.

7.
(
n+1
k+1

)
. Do induction, using Pascal’s identity. Or consider all the k + 1 subsets

of the set {1, 2, . . . , n+1} and group them according to their greatest element.

8. n+1
n−m+1

. First prove the identity
(mk)
(nk)

=
(n−k
n−m)
(n
m)

and use the previous problem.

9. For any real α one defines(
α

n

)
=

α(α− 1) · · · (α− n+ 1)

n!
,

extending the binomial coefficient (the Euler Beta function is a further gener-
alization to paris of reals, but it takes integrals to define).

Check that (
−1/2

n

)
= (−1)n4n

(
2n

n

)
.

The sum in the question is now just a multiple of the Vandermonde sum (6)

4n(−1)n
n∑
k0

(
−1/2

k

)(
−1

n− k

)
= 4n

(but we should understand why (6) is valid for real m,n)

2. How many subsets that have an even number of elements are there in a set with n
elements?

Solution: 2n−1 if n ≥ 1. If S a subset with an even number of elements, the
membership of the first n − 1 elements in S can be decided arbitrarily, but the
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membership of the last element in S is completely determined by the previous n− 1
choices. Or by problem 1.2, the number of subsets with an even number of elements
is equal to the number of subsets with an odd number of elements.

3. In how many ways can 16 players be paired for the first round of a tennis tournament?

Solution: (
16
2

)(
14
2

)
. . .

(
2
2

)
8!

= 15 · 13 · 11 · · · 3 · 1

The first player can be paired with any of the 15 remaining players. Now we are left
with a smaller problem of pairing 14 players, so we repeat the process or appeal to
induction.

Another interpretation consists of taking into account the relative positions of each
couple and all the games. We draw the tree and divide by all the symmetries, in
order to get

16!

28 · · · 24 · 22 · 21
.

Warning: this number is different from the other, and possibly gives the best answer.

4. How many ways are there to place an order of n donuts if there are k varieties to choose
from?

Solution: Imagine the donuts lined up with k − 1 dividers between k the different
varieties, for a total of n+ k − 1 spots: k − 1 for the dividers, and n for the donuts.
Then count the number of ways to pick the k − 1 spots for the dividers out of the
n+ k − 1 available spots.

5. How many 10 letter “words” can be formed using 3 A’s, 2 E’s, 2 I’s, one B, one C, and
one D?

Solution: (
10

3

)(
7

2

)(
5

2

)(
3

1

)(
2

1

)(
1

1

)
First pick three out of the 10 available slots for the letters and place the A’s in those
slots, then pick two out of the remaining 7 free slots for the E’s, and so on.
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6. How many ordered triples of sets (A,B,C) satisfy A ∩ B ∩ C = ∅ and A ∪ B ∪ C =
{1, 2, ..., 10}?

Solution: This is (Putnam ’85, A1). Consider the Venn diagram formed by A, B
and C. Each element of {1, 2, ..., 10} can, independently of the others, go into six
of the eight regions in the diagram. Thus there are 610 triples (A,B,C) with the
specified properties.

7. Let 1 ≤ r ≤ n and consider all subsets of r elements of the set {1, 2, . . . , n}. Each of
these subsets has a smallest member. Let F (n, r) denote the arithmetic mean of these
smallest numbers; prove that

F (n, r) = n+1
r+1

.

Solution: (IMO 1981) Clearly

F (n, r) =

(
n−1
r−1

)
+ 2

(
n−2
r−1

)
+ . . .+ (n− r + 1)

(
r−1
r−1

)(
n
r

) .

The numerator can be computed by

n∑
j=1

j

(
n− j

r − 1

)
=

n−r+1∑
j=1

j

(
n− j

r − 1

)
=

n−r+1∑
i=1

n−r+1∑
j=i

(
n− j

r − 1

)

=
n−r+1∑
i=1

(
n− i+ 1

r

)
=

(
n+ 1

r + 1

)
from which F (n, r) quickly follows.

8. Show that the coefficient of xk in the expansion of (1 + x+ x2 + x3)n is
∑k

j=0

(
n
j

)(
n

k−2j

)
.

Solution: This is (Putnam ’92, B2). Write 1 + x + x2 + x3 = (1 + x)(1 + x2). So
the expression is (∑(

n

i

)
xi

)(∑(
n

j

)
x2j

)
.

To get a term in xk we must multiply a term x2j by a term xk−2j for some j. The
result follows.
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9. Let p be a prime > 2. Prove that
∑

0≤n≤p

(
p
n

)(
p+n
n

)
≡ 2p + 1 (mod p2).

Solution: This is (Putnam ’91, B4).

Let Dn =
(
p
n

)(
p+n
n

)
. We show that D0 ≡

(
p
0

)2
(mod p2), Dp ≡

(
p
p

)
+ 1 (mod p2),

and for the other termsDn ≡
(
p
n

)
(mod p2). The result then follows since

∑p
n=0

(
p
n

)
=

2p.

For n = 0, it is obvious that D0 = 1 =
(
p
0

)
.

For n = p. Notice that we can write (p−1)!
(
2p−1
p−1

)
as (1+p)(2+p)(3+p) · · · (p−1+p).

Expanding, we get (p − 1)! + (1 + 2 + · · · + p − 1)p + O(p2) ≡ (p − 1)! (mod p2),

since (1 + 2 + · · · + p − 1) = p(p−1)
2

. Hence,
(
2p−1
p−1

)
≡ 1 (mod p2). Hence

(
2p
p

)
=

2p
p

(
2p−1
p−1

)
≡ 2 ≡ 1 +

(
p
p

)
(mod p2).

For 0 < n < p,
(
p
n

)
≡ 0 (mod p) [because all the factors in n!(p − n)! are < p and

hence relatively prime to p, so the factor p in the numerator p! remains after dividing
by n!(p−n)!]. Also p+i ≡ i ̸≡ 0 (mod p), so (p+n) · · · (p+2)(p+1) ≡ n! (mod p)
and hence

(
p+n
n

)
≡ 1 (mod p) for 0 < n < p. In other words,

(
p+n
n

)
= kp+1 for some

integer k. But kp
(
p
n

)
≡ 0 (mod p2), since p divides

(
p
n

)
, so Dn =

(
p
n

)(
p+n
n

)
≡

(
p
n

)
(mod p2).

10. Let p be a prime ≥ 5. Prove that p2 divides
∑[2p/3]

r=1

(
p
r

)
.

Solution: This is (Putnam ’96, A5).

Each
(
p
i

)
is divisible by p. Write k = [2p/3]. So we have to show that S =

(p1)
p
+
(p2)
p
+

... +
(pk)
p

is divisible by p. We work in the field mod p.
(pi)
p

= (p−1)···(p−i+1)
1·2···i ≡ (−1)i−1

i

(mod p). Write h = ⌊k/2⌋ = ⌊p/3⌋. Hence S ≡ 1 − 1
2
+ · · · ± 1

k
≡ 1 + 1

2
+ · · · +

1
k
− 2

(
1
2
+ 1

4
+ · · ·+ 1

2h

)
≡ 1 + 1

2
+ · · · + 1

k
−

(
1 + 1

2
+ · · ·+ 1

h

)
≡ 1 + 1

2
+ · · · + 1

k
+(

1
p−1

+ 1
p−2

+ · · ·+ 1
p−h

)
(mod p). By considering p ≡ 1, 2 (mod 3) separately,

we can easily check that p− h ≡ k + 1 and hence S ≡ 1 + 1
2
+ · · · + 1

p−1
(mod p),

which is a complete set of reduced residues and hence sums to zero.
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