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Concours Putnam
Atelier de Pratique

Le jeudi, 26 septembre 12h30-13h30

Binômes

Binomial theorem

n∑
k=0

(
n

k

)
xk = (1 + x)n n = 1, 2 . . . .

Binomial series

∞∑
k=0

(
α

k

)
xk = (1 + x)α |x| < 1, α any real number

Pascal’s identity(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
for k, n positive integers

1. Compute the following
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∑
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)
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m
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)
8.
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n ≥ m

9.
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(
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k

)(
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n−k

)
2. How many subsets that have an even number of elements are there in a set with n

elements?

3. In how many ways can 16 players be paired for the first round of a tennis tournament?

4. How many ways are there to place an order of n donuts if there are k varieties to choose
from?

5. How many 10 letter “words” can be formed using 3 A’s, 2 E’s, 2 I’s, one B, one C, and
one D?
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6. How many ordered triples of sets (A,B,C) satisfy A ∩ B ∩ C = ∅ and A ∪ B ∪ C =
{1, 2, ..., 10}?

7. Let 1 ≤ r ≤ n and consider all subsets of r elements of the set {1, 2, . . . , n}. Each of
these subsets has a smallest member. Let F (n, r) denote the arithmetic mean of these
smallest numbers; prove that

F (n, r) = n+1
r+1

.

8. Show that the coefficient of xk in the expansion of (1+x+x2 +x3)n is
∑k

j=0

(
n
j

)(
n

k−2j

)
.

9. Let p be a prime > 2. Prove that
∑

0≤n≤p

(
p
n

)(
p+n
n

)
≡ 2p + 1 (mod p2).

10. Let p be a prime ≥ 5. Prove that p2 divides
∑[2p/3]

r=1

(
p
r

)
.
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