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Théorie des nombres

Euler Totient Function The Euler totient function ϕ(n), denoting the number of
positive integers not exceeding n and relatively prime to n is given by

ϕ(n) = n
∏
pi|n

(
1− 1

pi

)

where the pi’s are prime numbers.

Euler’s Theorem If a and n are relatively prime integers, then aϕ(n) ≡ 1 modn.

Pythagorean Triples All relatively prime positive integer solutions to x2 + y2 = z2

with x odd and y even are of the form x = u2 − v2 , y = 2uv, z = u2 + v2.

1. Let pn be the nth prime number. Show that the sequence {qn} defined by qn = pn+1−pn
is unbounded.

Solution: Note that none of the numbers n! + 2, n! + 3, . . . , n! + n are prime. Thus
there are arbitrarily large gaps in the sequence of primes.

2. Show that the product of four consecutive positive integers is never a perfect square.

Solution: Since n(n+1)(n+2)(n+3) = (n2+3n)(n2+3n+2) = (n2+3n+1)2−1,
the product of four integers is one less than a perfect square. Since n > 0, the
product is at least 24, but the only integer solutions to x2 − y2 = 1 are (1, 0) and
(−1, 0). Thus the product is not a perfect square.

3. Find the last two digits of 32011.

Solution: We are looking for a congruence modulo 100. We have that ϕ(100) =
ϕ(4) · ϕ(25) = 2(2− 1)5(5− 1) = 40. Since 2011 = 50 · 40 + 11,

32011 ≡ 350·40+11 ≡ (350)40311 ≡ 311 ≡ (35)2 · 3 ≡ 432 · 3 ≡ 49 · 3 ≡ 47( mod 100)

Thus the last two digits are 47.
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4. How many positive integers divide at least one of 1040 and 2030?

Solution: This is (Putnam ’83, A1). Answer: 2301. The factors of 1040 have the
form 2m5n with 0 ≤ m,n ≤ 40. So there are 412 = 1681 such factors. Factors
of 2030 = 260530 not dividing 1040 have the form 2m5n with 41 ≤ m ≤ 60 and
0 ≤ n ≤ 30, so there are 20 · 31 = 620 such factors.

5. Show that for any positive integer r, we can find integers a, b such that a2 − b2 = r3.

Solution: This is (Putnam ’54, B1). It suffices to take a + b = r2 and a − b = r.

Thus a = r(r+1)
2

and b = r(r−1)
2

.

6. Find all solutions to 1! + 2! + 3! + . . .+ n! = m2 in positive integers.

Solution: First notice that n! is a multiple of 10 for n ≥ 5. Thus the last digit of
1! + 2! + 3! + . . .+ n! is 3 for n ≥ 5. Since no perfect square ends in 3, it suffices to
check n ≤ 4. Thus the only solutions are m = n = 3 and m = n = 1.

7. Let a > 1. Show that an + 1 is prime only if a is even and n = 2k.

Solution: If a is odd, an +1 is an even number greater than 2. If n = mq, where m
is odd, then aq + 1|an + 1. (In general, b + 1|bm + 1 if m is odd.) Thus, if an + 1 is
prime for a > 1, then a must be even, and n should have no odd factor, i.e., n is a
power of 2.

8. Which members of the sequence 101, 10101, 1010101, ... are prime?

Solution: This is (Putnam ’89, A1). Let kn represent the member of the sequence
with n 1’s. It is obvious that 101 divides k2n. So we need only consider k2n+1.

But

k2n+1 = 1 + 102 + 104 + ...+ 104n =
104n+2 − 1

99
=

102n+1 + 1

11
· 10

2n+1 − 1

9
.

Each of these is integral: the first is 1 − 10 + 102 − ... + 102n, the second is 11...1
(2n+ 1 digits 1’s).
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9. The number 2333 has 101 digits, and begins with 1. How many of the numbers in the
set 2, 4, 8, 16, ..., 2333 begin with 4?

Solution: The solution is bases on the observation that between 10k and 10k+1 − 1,
there is exactly one power of 2 starting with 1, exactly one power of two starting
with 2 or 3, and exactly one power of 2 starting with a digit from {5, 6, 7, 8, 9}.
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