Concours Putnam

Atelier de Pratique Le jeudi, 7 novembre 12h30-13h30 5448 Pav. André Aisenstadt

Théorie des nombres

Euler Totient Function The Euler totient function $\phi(n)$, denoting the number of positive integers not exceeding n and relatively prime to n is given by

$$\phi(n) = n \prod_{p_i|n} \left(1 - \frac{1}{p_i}\right)$$

where the p_i 's are prime numbers.

Euler's Theorem If a and n are relatively prime integers, then $a^{\phi(n)} \equiv 1 \mod n$.

Pythagorean Triples All relatively prime positive integer solutions to $x^2 + y^2 = z^2$ with x odd and y even are of the form $x = u^2 - v^2$, y = 2uv, $z = u^2 + v^2$.

1. Let p_n be the n^{th} prime number. Show that the sequence $\{q_n\}$ defined by $q_n = p_{n+1} - p_n$ is unbounded.

Solution: Note that none of the numbers n! + 2, n! + 3, ..., n! + n are prime. Thus there are arbitrarily large gaps in the sequence of primes.

2. Show that the product of four consecutive positive integers is never a perfect square.

Solution: Since $n(n+1)(n+2)(n+3) = (n^2+3n)(n^2+3n+2) = (n^2+3n+1)^2-1$, the product of four integers is one less than a perfect square. Since n > 0, the product is at least 24, but the only integer solutions to $x^2 - y^2 = 1$ are (1,0) and (-1,0). Thus the product is not a perfect square.

3. Find the last two digits of 3^{2011} .

Solution: We are looking for a congruence modulo 100. We have that $\phi(100) = \phi(4) \cdot \phi(25) = 2(2-1)5(5-1) = 40$. Since $2011 = 50 \cdot 40 + 11$,

 $3^{2011} \equiv 3^{50 \cdot 40 + 11} \equiv (3^{50})^{40} 3^{11} \equiv 3^{11} \equiv (3^5)^2 \cdot 3 \equiv 43^2 \cdot 3 \equiv 49 \cdot 3 \equiv 47 \pmod{100}$

Thus the last two digits are 47.

4. How many positive integers divide at least one of 10^{40} and 20^{30} ?

Solution: This is (Putnam '83, A1). Answer: 2301. The factors of 10^{40} have the form $2^{m}5^{n}$ with $0 \le m, n \le 40$. So there are $41^{2} = 1681$ such factors. Factors of $20^{30} = 2^{60}5^{30}$ not dividing 10^{40} have the form $2^{m}5^{n}$ with $41 \le m \le 60$ and $0 \le n \le 30$, so there are $20 \cdot 31 = 620$ such factors.

5. Show that for any positive integer r, we can find integers a, b such that $a^2 - b^2 = r^3$.

Solution: This is (Putnam '54, B1). It suffices to take $a + b = r^2$ and a - b = r. Thus $a = \frac{r(r+1)}{2}$ and $b = \frac{r(r-1)}{2}$.

6. Find all solutions to $1! + 2! + 3! + \ldots + n! = m^2$ in positive integers.

Solution: First notice that n! is a multiple of 10 for $n \ge 5$. Thus the last digit of $1! + 2! + 3! + \ldots + n!$ is 3 for $n \ge 5$. Since no perfect square ends in 3, it suffices to check $n \le 4$. Thus the only solutions are m = n = 3 and m = n = 1.

7. Let a > 1. Show that $a^n + 1$ is prime only if a is even and $n = 2^k$.

Solution: If a is odd, $a^n + 1$ is an even number greater than 2. If n = mq, where m is odd, then $a^q + 1|a^n + 1$. (In general, $b + 1|b^m + 1$ if m is odd.) Thus, if $a^n + 1$ is prime for a > 1, then a must be even, and n should have no odd factor, i.e., n is a power of 2.

8. Which members of the sequence 101, 10101, 1010101, ... are prime?

Solution: This is (Putnam '89, A1). Let k_n represent the member of the sequence with n 1's. It is obvious that 101 divides k_{2n} . So we need only consider k_{2n+1} . But

$$k_{2n+1} = 1 + 10^2 + 10^4 + \dots + 10^{4n} = \frac{10^{4n+2} - 1}{99} = \frac{10^{2n+1} + 1}{11} \cdot \frac{10^{2n+1} - 1}{9}.$$

Each of these is integral: the first is $1 - 10 + 10^2 - \dots + 10^{2n}$, the second is 11...1 (2n + 1 digits 1's).

9. The number 2^{333} has 101 digits, and begins with 1. How many of the numbers in the set $2, 4, 8, 16, ..., 2^{333}$ begin with 4?

Solution: The solution is bases on the observation that between 10^k and $10^{k+1} - 1$, there is exactly one power of 2 starting with 1, exactly one power of two starting with 2 or 3, and exactly one power of 2 starting with a digit from $\{5, 6, 7, 8, 9\}$.