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Suites et Séries
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2. Evaluate
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where [t] denotes the greatest integer < ¢.
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Evaluate
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where s(n) is the number of 1’s in the binary expansion of n.

Let a and d be positive integers. Show that the arithmetic progression a, a+d, a+2d, . ..
either contains no perfect square or contains infinitely many perfect squares.

Solve: z,11 = 2x,(1 — z,), with x; = —1.

Let {x,} be a sequence of real numbers satisfying z, = (z,_1 + z,_2)/2. Show that the
sequence converges, and find the limit in terms of zy and z;.

Let {z,},{y,} and {z,} be infinite sequences of positive integers. Show that there exist
distinct indices p and ¢ such that x, > z, , y, > y,, and 2z, > z,.
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Let a; = a2 =1 and a,, = (17;‘—12” for n > 3. Show that a,, is an integer for all n.
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. For each integer n > 0, let d(n) = n —m? , where m is the largest integer with m? < n.

Define a sequence {by} by by = B; bxi1 = b + d(by). For what positive integers B is
{bx} eventually constant?

A sequence of natural numbers is given by x; = 2, x,,.1 = |1.5x,]. Prove that it contains
infinitely many odd numbers, and infinitely many even numbers

Page 2



