Concours Putnam

Atelier de Pratique
Le mardi, 21 novembre 12h30-13h30
5448 Pav. André Aisenstadt

Récurrences

1. Let $a_{0}=1, a_{1}=\frac{3}{5}, a_{n+1}=\frac{6}{5} a_{n}-a_{n-1}$. Show that $\left|a_{n}\right| \leq 1$ for all n.

Solution: The characteristic equation is

$$
x^{2}-\frac{6}{5} x+1=0
$$

with roots $\frac{3 \pm 4 i}{5}$. The solution is given by $a_{n}=\alpha\left(\frac{3+4 i}{5}\right)^{n}+\beta\left(\frac{3-4 i}{5}\right)^{n}$. Then $\alpha+\beta=1$ and $\alpha=\beta=\frac{1}{2}$. Thus $a_{n}=\frac{1}{2} 2 \operatorname{Re}\left(\frac{3+4 i}{5}\right)^{n}$. Then $\left|a_{n}\right| \leq\left|\frac{3+4 i}{5}\right|^{n}=1$.
2. Solve $a_{n+1}=\sqrt{a_{n} a_{n-1}}$ where $0<a_{0}<a_{1}$ and find $\lim _{n \rightarrow \infty} a_{n}$.

Solution: It is not hard to see that $a_{n} \neq 0$ from the recurrence. We will prove that $a_{n}=a_{1}^{b_{n}} a_{0}^{1-b_{n}}$. We have $b_{0}=0, b_{1}=1$, and then $a_{n+1}=\sqrt{a_{n} a_{n-1}}=$ $a_{1}^{\frac{b_{n}+b_{n-1}}{2}} a_{0}^{1-\frac{b_{n}+b_{n-1}}{2}}$. We get

$$
2 b_{n+1}=b_{n}+b_{n-1} .
$$

The characteristic equation is $2 x^{2}-x-1=0$. Then $b_{n}=\alpha+\beta(-1 / 2)^{n}$ with $\alpha+\beta=0$ and $2 \alpha-\beta=2$. So $\alpha=\frac{2}{3}$ and $\beta=-\frac{2}{3}$. This means that

$$
b_{n}=\frac{2}{3}\left(1-\left(-\frac{1}{2}\right)^{n}\right) \rightarrow \frac{2}{3}
$$

Then

$$
\lim _{n \rightarrow \infty} a_{n}=a_{1}^{2 / 3} a_{0}^{1 / 3}
$$

Alternatively, we can write $b_{n}=\log a_{n}$ and solve the recurrence $b_{n+1}=\frac{b_{n}+b_{n+1}}{2}$.
3. Prove that the sequence $a_{0}=2, a_{1}=3, a_{2}=6, a_{3}=14, a_{4}=40, a_{5}=152, a_{6}=784, \ldots$ with general term $a_{n}=(n+4) a_{n-1}-4 n a_{n-2}+(4 n-8) a_{n-3}$ is the sum of two well-known sequences.

Solution: This is (Putnam 1990, A1). The answer is $n!+2^{n} . a_{5}, a_{6}$ remind of 120 , 720. We check:

$$
\begin{aligned}
& (n+4) a_{n-1}-4 n a_{n-2}+(4 n-8) a_{n-3} \\
= & (n+4)\left((n-1)!+2^{n-1}\right)-4 n\left((n-2)!+2^{n-2}\right)+4(n-2)\left((n-3)!+2^{n-3}\right) \\
= & (n+4)(n+1)!+(4-4 n)(n-2)!+2^{n-1}(n+4-2 n+n-2) \\
= & n!+2^{n}
\end{aligned}
$$

4. The sequence a_{n} of non-zero reals satisfies $a_{n}^{2}-a_{n-1} a_{n+1}=1$ for $n \geq 1$. Prove that there exists a real number α such that $a_{n+1}=\alpha a_{n}-a_{n-1}$ for $n \geq 1$.

Solution: This is (Putnam 1993, A2). For $n \geq 2$ define $b_{n}=\frac{a_{n}+a_{n-2}}{a_{n-1}}$. Then the relation given shows that $b_{n+1}=b_{n}=\ldots=b_{2}=\alpha$.
5. Find

$$
\lim _{n \rightarrow \infty}(2+\sqrt{2})^{n}-\left\lfloor(2+\sqrt{2})^{n}\right\rfloor
$$

where $\lfloor x\rfloor$ is the largest integers $\leq x$.

Solution: Notice that $(2+\sqrt{2})^{n}+(2-\sqrt{2})^{n}$ is an integer. Since

$$
0<(2+\sqrt{2})^{n}-\left\lfloor(2+\sqrt{2})^{n}\right\rfloor+(2-\sqrt{2})^{n}-\left\lfloor(2-\sqrt{2})^{n}\right\rfloor<2
$$

and it is the difference of two integers, we conclude that it is equal to 1 . Now $\lim _{n \rightarrow \infty}(2-\sqrt{2})^{n}=0$ implies that $\lim _{n \rightarrow \infty}(2-\sqrt{2})^{n}-\left\lfloor(2-\sqrt{2})^{n}\right\rfloor=0$. Then

$$
\lim _{n \rightarrow \infty}(2+\sqrt{2})^{n}-\left\lfloor(2+\sqrt{2})^{n}\right\rfloor=1
$$

6. Solve

$$
f(n+1)=1+\sum_{i=0}^{n-1} f(i)
$$

with $f(0)=1$.

Solution: Notice that $f(n+2)-f(n+1)=f(n)$, and that $f(1)=1+\sum_{i=0}^{-1}=1$. We get $f(n)=F_{n+1}$ the Fibonacci sequence.
7. Solve

$$
y_{n}\left(1+a y_{n-1}\right)=1 .
$$

Solution: Write $y_{n}=\frac{x_{n}}{x_{n+1}}$. Then

$$
x_{n+1}=x_{n}+a x_{n-1}
$$

and then continue as always.
8. Given $a_{n}=\left(n^{2}+1\right) 3^{n}$, find a recurrence relation $a_{n}+p a_{n+1}+q a_{n+2}+r a_{n+3}=0$. Hence evaluate $\sum_{n=0}^{\infty} a_{n} x^{n}$.

Solution: This is (Putnam 1939, B3). We look for a relation between $b_{n}=\frac{a_{n}}{3^{n}}$, because that takes care of the powers of 3 . So, ignoring the 3^{n}, we are looking at: $n^{2}+1, n^{2}+2 n+2, n^{2}+4 n+5, n^{2}+6 n+10$.

We try to get a linear combination of the first three which is constant. Subtracting twice the second from the third gets rid of the n term, then adding the first gets rid of the n^{2} term. So, $b_{n+2}-2 b_{n+1}+b_{n}=2$. But $b_{n+3}-2 b_{n+2}+b_{n+1}$ has the same value, so subtracting:

$$
a_{n+3}-9 a_{n+2}+27 a_{n+1}-27 a_{n}=0
$$

which is the required recurrence relation.
Let the power series sum to y. Then taking $y-9 x y+27 x^{2} y-27 x^{3} y$ will give $a_{n+3}-9 a_{n+2}+27 a_{n+1}-27 a_{n}$ as the coefficient of x^{n+3}, so we need only worry about the early terms: $a_{0}+\left(a_{1}-9 a_{0}\right) x+\left(a_{2}-9 a_{1}+27 a_{0}\right) x^{2}=\left(1-3 x+18 x^{2}\right)$. Hence $y=\frac{1-3 x+18 x^{2}}{1-9 x+27 x^{2}-27 x^{3}}$.
9. The sequence a_{n} is defined by $a_{1}=2, a_{n+1}=a_{n}^{2}-a_{n}+1$. Show that any pair of values in the sequence are relatively prime and that $\sum \frac{1}{a_{n}}=1$.

Solution: This is (Putnam 1956, B6). We show by induction on k that $a_{n+k} \equiv$ $1\left(\bmod a_{n}\right)$. Obviously true for $k=1$. Suppose it is true for k. Then for some m, $a_{n+k}=m a_{n}+1$. Hence $a_{n+k+1}=a_{n+k}\left(m a_{n}+1-1\right)+1=a_{n+k} m a_{n}+1 \equiv 1\left(\bmod a_{n}\right)$. So the result is true for all k. Hence any pair of distinct a_{n} are relatively prime.
We show by induction that $\sum_{1}^{n} \frac{1}{a_{r}}=1-\frac{1}{a_{n+1}-1}$. For $n=2$, this reduces to $\frac{1}{2}=$ $1-\frac{1}{3-1}$, which is true. Suppose it is true for n. Then $\sum_{1}^{n+1} \frac{1}{a_{r}}=1-k$, where

$$
\begin{aligned}
& k=\frac{1}{a_{n+1}-1}-\frac{1}{a_{n+1}}=\frac{1}{a_{n+1}^{2}-a_{n+1}}=\frac{1}{a_{n+2}-1}, \text { so it is true for } n+1 . \text { But } a_{n} \rightarrow \infty, \text { so } \\
& \sum \frac{1}{a_{n}}=1 .
\end{aligned}
$$

