Concours Putnam Atelier de Pratique Le mardi, 7 novembre 12h30-13h30 5448 Pav. André Aisenstadt Géométrie

- 1. Let A, B, C, D be four points in space forming a quadrilateral. Show that the midpoints of AB, BC, CD, DA form a parallellogram.
- 2. Let A, B, C, D be four points on a plane. Prove that $|AB||CD| + |BC||AD| \ge |AC||BD|$.
- 3. Let v_1, \ldots, v_k be k vectors in the plane of norm $|v_i| \leq 1$. Prove that there exists a choice of signs such that $v = \pm v_1 \ldots \pm v_k$ satisfies $|v| \leq \sqrt{2}$.
- 4. Let P_1, \ldots, P_n be points on the unit sphere. Prove that $\sum_{i \le j} |P_i P_j|^2 \le n^2$.
- 5. Does the circle $S^1 = \{x^2 + y^2 = 1\}$ in the plane contain a closed subset that contains exactly one of each pair of diametrically opposite points?
- 6. Show that there are no 7 lines in the plane such that there are at least 6 points in the plane which lie on the intersection of just three of the lines and at least 4 points in the plane which lie on the intersection of just two of the lines.