Concours Putnam

Atelier de Pratique
Le mardi, 7 novembre 12h30-13h30
5448 Pav. André Aisenstadt

Géométrie

1. Let A, B, C, D be four points in space forming a quadrilateral. Show that the midpoints of $A B, B C, C D, D A$ form a parallellogram.
2. Let A, B, C, D be four points on a plane. Prove that $|A B||C D|+|B C||A D| \geq|A C||B D|$.
3. Let v_{1}, \ldots, v_{k} be k vectors in the plane of norm $\left|v_{i}\right| \leq 1$. Prove that there exists a choice of signs such that $v= \pm v_{1} \ldots \pm v_{k}$ satisfies $|v| \leq \sqrt{2}$.
4. Let P_{1}, \ldots, P_{n} be points on the unit sphere. Prove that $\sum_{i \leq j}\left|P_{i} P_{j}\right|^{2} \leq n^{2}$.
5. Does the circle $S^{1}=\left\{x^{2}+y^{2}=1\right\}$ in the plane contain a closed subset that contains exactly one of each pair of diametrically opposite points?
6. Show that there are no 7 lines in the plane such that there are at least 6 points in the plane which lie on the intersection of just three of the lines and at least 4 points in the plane which lie on the intersection of just two of the lines.
