Concours Putnam

Atelier de Pratique
Le mardi, 7 novembre 12h30-13h30
5448 Pav. André Aisenstadt

Géométrie

1. Let A, B, C, D be four points in space forming a quadrilateral. Show that the midpoints of $A B, B C, C D, D A$ form a parallellogram.

Solution: Consider A, B, C, D as vectors in \mathbb{R}^{n}. Then the midpoints are given by $P=(A+B) / 2, Q=(B+C) / 2, S=(A+D) / 2, R=(D+C) / 2$. Then $Q-P=$ $(C-A) / 2=R-S, P-S=(B-D) / 2=Q-R$. So $P Q R S$ is a parallelogram.
2. Let A, B, C, D be four points on a plane. Prove that $|A B||C D|+|B C||A D| \geq|A C||B D|$.

Solution: Think of A, B, C, D as of four complex numbers. We know by algebraic manipulation with the complex multiplication that $(A-B)(C-D)+(B-C)(A-D)=$ $(A-C)(B-D)$. Hence the inequality follows by taking norms and using their multiplicativity and the triangle inequality.
3. Let v_{1}, \ldots, v_{k} be k vectors in the plane of norm $\left|v_{i}\right| \leq 1$. Prove that there exists a choice of signs such that $v= \pm v_{1} \ldots \pm v_{k}$ satisfies $|v| \leq \sqrt{2}$.

Solution: We can suppose that no vectors vanish, by discarding all zero vectors. The question is trivial for $k=1$. We first solve the question for $k=2$. If a, b are vectors of norm at most one, then by switching a to $-a$ if necessary we can assume that $\langle a, b\rangle \leq 0$. Then $|a+b|^{2}=|a|^{2}+|b|^{2}+2\langle a, b\rangle \leq 2$, so $|a+b| \leq \sqrt{2}$. We will now reduce the question to $k=2$ by showing that for each three vectors a, b, c with norm at most 1 , at least one of the six vectors $a \pm b, b \pm c, a \pm c$ is of norm at most one (which we apply recursively). Indeed, at least one pair x, y of the six vectors $\{ \pm a, \pm b, \pm c\}$ is at angle $\theta \geq 2 \pi / 3$, so $\langle x, y\rangle=|x||y| \cos (\theta) \leq-|x||y| / 2$ and hence $|x+y|^{2}=|x|^{2}+|y|^{2}+2\langle x, y\rangle \leq|x|^{2}+|y|^{2}-|x||y| \leq \max \left\{|x|^{2},|y|^{2}\right\} \leq 1$.
4. Let P_{1}, \ldots, P_{n} be points on the unit sphere. Prove that $\sum_{i \leq j}\left|P_{i} P_{j}\right|^{2} \leq n^{2}$.

Solution: Thinking of these points as vectors, recall that $|v|^{2}=\langle v, v\rangle$ for all $v \in \mathbb{R}^{k}$, where $\langle v, w\rangle=v_{1} w_{1}+\ldots+v_{k} w_{k}$ is the scalar product. Now we know that $\left|P_{i}\right|=1$ for all i, and $\left|P_{i} P_{j}\right|^{2}=\left\langle P_{i}-P_{j}, P_{i}-P_{j}\right\rangle$, hence

$$
\left|P_{i} P_{j}\right|^{2}=\left|P_{i}\right|^{2}+\left|P_{j}\right|^{2}-2\left\langle P_{i}, P_{j}\right\rangle=2-2\left\langle P_{i}, P_{j}\right\rangle .
$$

Hence by summing over all $i<j$ (since $\left|P_{i} P_{i}\right|=0$ for all i), we obtain

$$
\sum_{i \leq j}\left|P_{i} P_{j}\right|^{2}=2 n(n-1) / 2-2 \sum_{i<j}\left\langle P_{i}, P_{j}\right\rangle .
$$

On the other hand we know that

$$
0 \leq\left\langle\sum_{i} P_{i}, \sum_{j} P_{j}\right\rangle=\sum_{i}\left|P_{i}\right|^{2}+2 \sum_{i<j}\left\langle P_{i}, P_{j}\right\rangle .
$$

Hence $-2 \sum_{i<j}\left\langle P_{i}, P_{j}\right\rangle \leq \sum_{i}\left|P_{i}\right|^{2}=n$, so we conclude that

$$
\sum_{i \leq j}\left|P_{i} P_{j}\right|^{2} \leq n^{2}-n+n=n^{2}
$$

5. Does the circle $S^{1}=\left\{x^{2}+y^{2}=1\right\}$ in the plane contain a closed subset that contains exactly one of each pair of diametrically opposite points?

Solution: (This is Putnam 1975, B4) The map $\tau: v=(x, y) \mapsto-v=(-x,-y)$ is a homeomorphism from S^{1} to S^{1}, a continuous mapping whose inverse is also continuous, and hence takes closed sets to closed sets. Hence K and $\tau(K)$ are disjoint closed sets whose union is S^{1}, but that is impossible since S^{1} is connected. (For example, take a continuous arc $\gamma:[0,1] \rightarrow \mathbb{R}$ joining $\gamma(0)=x \in K$ and $\gamma(1)=y \in \tau(K)$. Then for the point $t_{0}=\inf \{t \mid \gamma(t) \in \tau(K)\}$ we have $\gamma\left(t_{0}\right) \in \tau(K)$ because $\tau(K)$ is closed and γ is continuous, but also $\gamma\left(t_{0}\right) \in K$ because we can find $t_{j} \rightarrow t_{0}, t_{j} \leq t_{0}, \gamma\left(t_{j}\right) \in K$, and K is closed and γ is contiuous. But then $K, \tau(K)$ are not disjoint, contradiction.)
6. Show that there are no 7 lines in the plane such that there are at least 6 points in the plane which lie on the intersection of just three of the lines and at least 4 points in the plane which lie on the intersection of just two of the lines.

Solution: (This is Putnam 1973, A6) From 7 lines we can choose just 21 pairs. An intersection of 3 lines accounts for 3 distinct pairs of lines, an intersection of 2 lines for 1 pair. Hence the configuration given would have at least $6 \cdot 3+4 \cdot 2=22$ distinct pairs of lines.

