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Suites et séries

1. Let u be a real number with 0 < u < 1. Let u0 = u, and for n ≥ 1 define un recursively
by

un =
1

un−1
+ u.

Prove that the sequence {un}n≥1 converges and find its limit.

Solution: Assuming the existence of the limit L = L(u), substitute L for un and
un−1 in the equation and solve. It gives a quadratic equation with two roots, one
positive and one negative. The recurrence forces un to be positive, hence L is positive
and equal to L = u+

√
u2+4
2

. To prove the existence of the limit let dn = un − L. The

recurrence for un and the equation defining L gives dn = − dn−1

Lun−1
. Iterating this

recurrence, dn = dn−2

L2un−1un−2
. Since L > 1 and un−1un−2 > 1 (which follows from the

recurrence for un−1), this implies that dn tends to 0 at a geometric rate and thus
un → L as n→∞.

2. Let {xn}n∈N be a sequence such that limn→∞(xn − xn−2) = 0. Show that

lim
n→∞

xn − xn−1
n

= 0.

Solution: This is (Putnam 1970 A4). Let bn = xn − xn−2. Then there is an m > 2
such that |bn| < ε

2
for n > m. Then

xn − xn−1 = (xn − xn−2)− (xn−1 − xn−3) + (xn−2 − xn−4)− . . .

=
n∑

i=2

(−1)n−ibi + (−1)n+1(x1 − x0)

=

( ∑
2≤i≤m

(−1)n−ibi + (−1)n+1(x1 − x0)

)
+
∑

m<i≤n

(−1)n−ibi.

Now ∣∣∣∣∣ ∑
2≤i≤m

(−1)n−ibi + (−1)n+1(x1 − x0)

∣∣∣∣∣ ≤ ∑
2≤i≤m

|bi|+ |x1 − x0| = Cm
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For n > m′ Cm

n
< ε

2
. On the other hand,∣∣∣∣∣ ∑

m<i≤n

(−1)n−ibi

∣∣∣∣∣ ≤ ∑
m<i≤n

|bi| ≤
εn

2

Thus, for n ≥ m,m′,
xn − xn−1

n
≤ ε

2
+
ε

2
= ε,

which is what we wanted to prove.

3. Does the series
∞∑
n=0

nn

2n2

converge?

Solution: It converges by Cauchy’s criterion:

lim
n→∞

(
nn

2n2

) 1
n

= lim
n→∞

n

2n
= 0.

4. Decide if the series
∞∑
n=2

1

n lnn

converges

Solution: It suffices to compare with the function 1
x lnx

. The sum has to be compared
with the integral ∫ ∞

2

dx

x lnx
= ln(lnx)|∞2

but the limit does not exist, so the original series diverges.

5. Let an be a sequence of positive reals satisfying an ≤ a2n + a2n+1 for all n. Prove that∑
an diverges.

Page 2
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Solution: This is (Putnam 1994, A1)

∑
an = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + . . .

and each bracket as sum at least a1 > 0.

6. The sequence an is monotonic and
∑
an converges. Show that

∑
n(an−an+1) converges.

Solution: (Putnam 1952, B5) The sum of the first n terms is

(a1 − a2) + 2(a2 − a3) + . . .+ n(an − an+1) = a1 + a2 + a3 + . . .+ an − nan+1.

We are given that
∑
an converges, so it is sufficient to show that the sequence nan+1

converges to zero.

But since
∑
an converges, |an+1 + an+2 + . . . + a2n| is arbitrarily small for n suffi-

ciently large. Since an is monotonic, this implies that nan+1 is arbitrarily small for
n sufficiently large.

7. Does
∑

n≥0
n!kn

(n+1)n
converge or diverge for k = 19

7
?

Solution: This is (Putnam 1942, A3). The nth term divided by the n− 1th term is
knnn−1

(n+1)n
= k

(1+1/n)n
which tends to k

e
. But k

e
< 1, so the series converges by the ratio

test.

8. The real sequence an satisfies an =
∑∞

k=n+1 a
2
k. Show

∑
an does not converge unless all

an are zero.

Solution: This is (Putnam 1954, A6). Clearly an ≥ 0. If any an = 0, then all
subsequent ai must be zero, and, by a trivial induction, all previous ai. So assume
no an = 0.

Notice that an−1 = a2n + an. But we have that a2n > 0, so an−1 > an.

If the sum converges, then we can take n sufficiently large that an+1 + an+2 + an+3 +
. . . < 1. Then an = a2n+1 + a2n+2 + a2n+3 + . . . < an(an+1 + an+2 + an+3 + . . .) < an.
Contradiction. So the sum does not converge.
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9. The series
∑
an of non-negative terms converges and ai ≤ 100an for i = n, n + 1, n +

2, . . . , 2n. Show that limn→∞ nan = 0.

Solution: This is (Putnam 1963, B5). We need to invert the inequality given. We
are given a collection of ai which are less than a fixed an. We want to fix an and find
a collection of aj such that an ≤ 100aj.

Evidently, a2n ≤ 100a2n−1, a2n ≤ 100a2n−2, a2n ≤ 100a2n−3, . . . , a2n ≤ 100an. Adding
and multiplying by two, 2na2n ≤ 200(an + an+1 + . . .+ a2n−1). But

∑
an converges,

so (an + an+1 + . . .+ a2n−1) <
ε

200
for all sufficiently large n, and hence 2na2n < ε for

sufficiently large n. Similarly for (2n+ 1)a2n+1. So nan tends to zero.
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