Concours Putnam

Atelier de Pratique
Le mardi, 31 octobre 12h30-13h30
5448 Pav. André Aisenstadt

Suites et séries

1. Let u be a real number with $0<u<1$. Let $u_{0}=u$, and for $n \geq 1$ define u_{n} recursively by

$$
u_{n}=\frac{1}{u_{n-1}}+u .
$$

Prove that the sequence $\left\{u_{n}\right\}_{n \geq 1}$ converges and find its limit.

Solution: Assuming the existence of the limit $L=L(u)$, substitute L for u_{n} and u_{n-1} in the equation and solve. It gives a quadratic equation with two roots, one positive and one negative. The recurrence forces u_{n} to be positive, hence L is positive and equal to $L=\frac{u+\sqrt{u^{2}+4}}{2}$. To prove the existence of the limit let $d_{n}=u_{n}-L$. The recurrence for u_{n} and the equation defining L gives $d_{n}=-\frac{d_{n-1}}{L u_{n-1}}$. Iterating this recurrence, $d_{n}=\frac{d_{n-2}}{L^{2} u_{n-1} u_{n-2}}$. Since $L>1$ and $u_{n-1} u_{n-2}>1$ (which follows from the recurrence for u_{n-1}), this implies that d_{n} tends to 0 at a geometric rate and thus $u_{n} \rightarrow L$ as $n \rightarrow \infty$.
2. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence such that $\lim _{n \rightarrow \infty}\left(x_{n}-x_{n-2}\right)=0$. Show that

$$
\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{n}=0
$$

Solution: This is (Putnam 1970 A4). Let $b_{n}=x_{n}-x_{n-2}$. Then there is an $m>2$ such that $\left|b_{n}\right|<\frac{\varepsilon}{2}$ for $n>m$. Then

$$
\begin{aligned}
x_{n}-x_{n-1} & =\left(x_{n}-x_{n-2}\right)-\left(x_{n-1}-x_{n-3}\right)+\left(x_{n-2}-x_{n-4}\right)-\ldots \\
& =\sum_{i=2}^{n}(-1)^{n-i} b_{i}+(-1)^{n+1}\left(x_{1}-x_{0}\right) \\
& =\left(\sum_{2 \leq i \leq m}(-1)^{n-i} b_{i}+(-1)^{n+1}\left(x_{1}-x_{0}\right)\right)+\sum_{m<i \leq n}(-1)^{n-i} b_{i} .
\end{aligned}
$$

Now

$$
\left|\sum_{2 \leq i \leq m}(-1)^{n-i} b_{i}+(-1)^{n+1}\left(x_{1}-x_{0}\right)\right| \leq \sum_{2 \leq i \leq m}\left|b_{i}\right|+\left|x_{1}-x_{0}\right|=C_{m}
$$

For $n>m^{\prime} \frac{C_{m}}{n}<\frac{\varepsilon}{2}$. On the other hand,

$$
\left|\sum_{m<i \leq n}(-1)^{n-i} b_{i}\right| \leq \sum_{m<i \leq n}\left|b_{i}\right| \leq \frac{\varepsilon n}{2}
$$

Thus, for $n \geq m, m^{\prime}$,

$$
\frac{x_{n}-x_{n-1}}{n} \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\epsilon
$$

which is what we wanted to prove.
3. Does the series

$$
\sum_{n=0}^{\infty} \frac{n^{n}}{2^{n^{2}}}
$$

converge?

Solution: It converges by Cauchy's criterion:

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{2^{n^{2}}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=0
$$

4. Decide if the series

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln n}
$$

converges

Solution: It suffices to compare with the function $\frac{1}{x \ln x}$. The sum has to be compared with the integral

$$
\int_{2}^{\infty} \frac{d x}{x \ln x}=\left.\ln (\ln x)\right|_{2} ^{\infty}
$$

but the limit does not exist, so the original series diverges.
5. Let a_{n} be a sequence of positive reals satisfying $a_{n} \leq a_{2 n}+a_{2 n+1}$ for all n. Prove that $\sum a_{n}$ diverges.

Solution: This is (Putnam 1994, A1)

$$
\sum a_{n}=a_{1}+\left(a_{2}+a_{3}\right)+\left(a_{4}+a_{5}+a_{6}+a_{7}\right)+\ldots
$$

and each bracket as sum at least $a_{1}>0$.
6. The sequence a_{n} is monotonic and $\sum a_{n}$ converges. Show that $\sum n\left(a_{n}-a_{n+1}\right)$ converges.

Solution: (Putnam 1952, B5) The sum of the first n terms is

$$
\left(a_{1}-a_{2}\right)+2\left(a_{2}-a_{3}\right)+\ldots+n\left(a_{n}-a_{n+1}\right)=a_{1}+a_{2}+a_{3}+\ldots+a_{n}-n a_{n+1}
$$

We are given that $\sum a_{n}$ converges, so it is sufficient to show that the sequence $n a_{n+1}$ converges to zero.

But since $\sum a_{n}$ converges, $\left|a_{n+1}+a_{n+2}+\ldots+a_{2 n}\right|$ is arbitrarily small for n sufficiently large. Since a_{n} is monotonic, this implies that $n a_{n+1}$ is arbitrarily small for n sufficiently large.
7. Does $\sum_{n \geq 0} \frac{n!k^{n}}{(n+1)^{n}}$ converge or diverge for $k=\frac{19}{7}$?

Solution: This is (Putnam 1942, A3). The nth term divided by the $n-1$ th term is $\frac{k n n^{n-1}}{(n+1)^{n}}=\frac{k}{(1+1 / n)^{n}}$ which tends to $\frac{k}{e}$. But $\frac{k}{e}<1$, so the series converges by the ratio test.
8. The real sequence a_{n} satisfies $a_{n}=\sum_{k=n+1}^{\infty} a_{k}^{2}$. Show $\sum a_{n}$ does not converge unless all a_{n} are zero.

Solution: This is (Putnam 1954, A6). Clearly $a_{n} \geq 0$. If any $a_{n}=0$, then all subsequent a_{i} must be zero, and, by a trivial induction, all previous a_{i}. So assume no $a_{n}=0$.
Notice that $a_{n-1}=a_{n}^{2}+a_{n}$. But we have that $a_{n}^{2}>0$, so $a_{n-1}>a_{n}$.
If the sum converges, then we can take n sufficiently large that $a_{n+1}+a_{n+2}+a_{n+3}+$ $\ldots<1$. Then $a_{n}=a_{n+1}^{2}+a_{n+2}^{2}+a_{n+3}^{2}+\ldots<a_{n}\left(a_{n+1}+a_{n+2}+a_{n+3}+\ldots\right)<a_{n}$. Contradiction. So the sum does not converge.
9. The series $\sum a_{n}$ of non-negative terms converges and $a_{i} \leq 100 a_{n}$ for $i=n, n+1, n+$ $2, \ldots, 2 n$. Show that $\lim _{n \rightarrow \infty} n a_{n}=0$.

Solution: This is (Putnam 1963, B5). We need to invert the inequality given. We are given a collection of a_{i} which are less than a fixed a_{n}. We want to fix a_{n} and find a collection of a_{j} such that $a_{n} \leq 100 a_{j}$.
Evidently, $a_{2 n} \leq 100 a_{2 n-1}, a_{2 n} \leq 100 a_{2 n-2}, a_{2 n} \leq 100 a_{2 n-3}, \ldots, a_{2 n} \leq 100 a_{n}$. Adding and multiplying by two, $2 n a_{2 n} \leq 200\left(a_{n}+a_{n+1}+\ldots+a_{2 n-1}\right)$. But $\sum a_{n}$ converges, so $\left(a_{n}+a_{n+1}+\ldots+a_{2 n-1}\right)<\frac{\varepsilon}{200}$ for all sufficiently large n, and hence $2 n a_{2 n}<\varepsilon$ for sufficiently large n. Similarly for $(2 n+1) a_{2 n+1}$. So $n a_{n}$ tends to zero.

