Concours Putnam

Atelier de Pratique

Le lundi, 12 novembre 12h30-13h30 (Salle: Pavillon André-Aisenstadt 5448)

Polynômes

Factor Theorem The polynomial \(p(x) = a_n x^n + \ldots + a_1 x + a_0 \) has a root \(\alpha \) of multiplicity \(m \), then \(p(x) = (x-\alpha)^mq(x), q(\alpha) \neq 0 \).

Elementary Symmetric Polynomials Every symmetric polynomial in \(x_1, x_2, \ldots, x_n \) can be expressed as a polynomial in \(\sigma_1, \sigma_1, \ldots, \sigma_n \), where

\[
\sigma_k = \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq n} x_{j_1} x_{j_2} \ldots x_{j_k}
\]

Vieta’s Formula Let \(z_1, z_2, \ldots z_n \) be the (possibly complex) roots of the monic polynomial \(p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1 x + a_0 \). Then \(a_{n-k} = (-1)^k \sigma_k(z_1, z_2, \ldots, z_n) \) where \(\sigma_k \) is the elementary symmetric polynomial of degree \(k \) in \(n \) variables.

Identity Theorem If \(p(x) \) and \(q(x) \) are polynomials of degree at most \(n \), and \(p(x_k) = q(x_k) \) for \(1 \leq k \leq n+1 \) for distinct \(x_1, x_2, \ldots, x_{n+1} \), then \(p(x) = q(x) \) for all \(x \).

1. Let \(\alpha = 2^{1/3} + 5^{1/2} \). Find a polynomial \(p(x) \) with integer coefficients satisfying \(p(\alpha) = 0 \).

Solution: \((\alpha - \sqrt{5})^3 = 2 \Rightarrow \alpha^3 + 15\alpha - 2 = \sqrt{5}(3\alpha^2 + 5)\). Therefore, \((\alpha^3 + 15\alpha - 2)^2 - 5(3\alpha^2 + 5)^2 = 0\). Thus,

\[
p(x) = (x^3 + 15x - 2)^2 - 5(3x^2 + 5)^2 = x^6 - 15x^4 - 4x^3 + 75x^2 - 60x - 121
\]

has the required property.

2. Find a polynomial of degree at most 3 such that \(p(2) = 3, p(3) = 5, p(5) = 8 \) and \(p(7) = 13 \).

Solution: Let \(p(x) = a + b(x-2) + c(x-2)(x-3) + d(x-2)(x-3)(x-5) \). Then

\[
a = p(2) = 3; \quad p(3) = a + b \Rightarrow b = 2; \quad p(5) = a + 3b + 6c \Rightarrow c = -1/6; \quad p(7) = a + 5b + 20c + 40d \Rightarrow d = -1/12.
\]

Thus,

\[
p(x) = 3 + 2(x-2) - \frac{(x-2)(x-3)}{6} - \frac{(x-2)(x-3)(x-5)}{12}.
\]

3. If \(x + y + z = 3, x^2 + y^2 + z^2 = 5, x^3 + y^3 + z^3 = 7 \), find \(x^4 + y^4 + z^4 \).
6. Suppose that the monic polynomial \(P(x, y, z) = x + y + z, \sigma_2(x, y, z) = xy + yz + zx \) and \(\sigma_3(x, y, z) = xyz \) denote the elementary symmetric polynomials in \(x, y, \) and \(z \). We have, \(\sigma_1 = 3, \sigma_1^2 - 2\sigma_2 = 5 \) and \(7 - 3\sigma_3 = \sigma_1(\sigma_1^2 - 3\sigma_2) \). Thus, \(\sigma_2 = 2 \) and \(\sigma_3 = -2/3 \). Now \(x^4 + y^4 + z^4 = (x^2 + y^2 + z^2)^2 - 2(\sigma_2^2 - 2\sigma_1\sigma_3) = 9 \).

Solution: Let \(\sigma_1(x, y, z) = x + y + z, \sigma_2(x, y, z) = xy + yz + zx \) and \(\sigma_3(x, y, z) = xyz \) denote the elementary symmetric polynomials in \(x, y, \) and \(z \). We have, \(\sigma_1 = 3, \sigma_1^2 - 2\sigma_2 = 5 \) and \(7 - 3\sigma_3 = \sigma_1(\sigma_1^2 - 3\sigma_2) \). Thus, \(\sigma_2 = 2 \) and \(\sigma_3 = -2/3 \). Now \(x^4 + y^4 + z^4 = (x^2 + y^2 + z^2)^2 - 2(\sigma_2^2 - 2\sigma_1\sigma_3) = 9 \).

4. Find all polynomials \(P(x) \) satisfying \(P(x^2 + 1) = (P(x))^2 + 1 \) for all \(x \) and \(P(0) = 0 \).

Solution: Consider the sequence \(\{u_k\} \) defined as follows: \(u_0 = 0; u_k = u_{k-1}^2 + 1 \) for \(k \geq 1 \). It can be easily proved by induction on \(k \) that \(P(u_k) = u_k \) for all \(k \). Since \(u_k > u_{k-1} \) for all \(k \), \(P(x) \) coincides with \(x \) for infinitely many values. It follows from the Identity Theorem that \(P(x) = x \).

5. Find a non-zero polynomial \(P(x, y) \) such that \(P([t], [2t]) = 0 \) for all real numbers \(t \).

Solution: This is (Putnam '05, B1). Answer: Let \([t] = n \). Thus \(n \leq t < n + 1 \), i.e, \(2n \leq 2t < 2n + 2 \). It follows that \([2t] = 2[t] \) or \([2t] = 2[t] + 1 \). Thus \(P(x, y) = (y - 2x)(y - 2x - 1) \) satisfies \(P([t], [2t]) = 0 \) for all \(t \).

6. Suppose that the monic polynomial \(p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + 1 \) has non-negative coefficients and \(n \) real roots. Show that \(p(2) \geq 3^n \).

Solution: Let \(y_1, y_2, \ldots, y_n \) be the roots of \(p(x) \). Since \(p(x) \geq 1 \) when \(x \geq 0 \), we have \(y_i < 0 \) for all \(i \). Let \(y_i' = -y_i \). Note that

\[
p(2) = (2 + y_1')(2 + y_2') \ldots (2 + y_n').
\]

By Vieta’s formula, \(y_1'y_2' \ldots y_n' = 1 \). Also, by the AGM inequality, \(2 + y_i' \geq 3(y_i')^{1/3} \). It follows that \(p(2) \geq 3^n \).

Another solution. Again notice that the roots \(y_i < 0 \). Thus we have,

\[
p(2) = \sum_{k=0}^{n} (-1)^k \sigma_k(y_1, \ldots, y_n) 2^{n-k} = \sum_{k=0}^{n} \sigma_k(|y_1|, \ldots, |y_n|) 2^{n-k}.
\]

By AGM,

\[
\frac{\sigma_k(|y_1|, \ldots, |y_n|)}{\binom{n}{k}} \geq \left(\frac{n}{k} \right)^{k} \frac{1}{\sqrt[k]{y_1 \ldots y_n}} = 1.
\]

Therefore,

\[
p(2) \geq \sum_{k=0}^{n} \binom{n}{k} 2^{n-k} = (1 + 2)^n = 3^n.
\]
7. Let \(p(x) = a_n x^n + \ldots + a_1 x + a_0 \) be a polynomial with integer coefficients. If \(r \) is a rational root of \(p(x) \), show that the numbers \(a_n r, a_n r^2 + a_{n-1} r, \ldots, a_n r^n + a_{n-1} r^{n-1} + \ldots + a_1 r \) are all integers.

Solution: This (Putnam ’04, B1). Let \(r = b/c \), with \((b, c) = 1\) (i.e., \(b \) and \(c \) are relatively prime). Since \(p(r) = 0 \), we get, after clearing denominators,

\[
a_n b^n + a_{n-1} b^{n-1} c + \ldots + a_0 c^n = 0.
\]

For \(1 \leq k \leq n \), define \(p_k(b, c) = a_n b^n + a_{n-1} b^{n-1} c + \ldots + a_{n-k+1} b^{n-k+1} c^{k-1} \).

Note that \(c^k | p_k(b, c) \). But \(p_k(b, c) = b^{n-k}(a_n b^k + a_{n-1} b^{k-1} + \ldots + a_{n-k+1} b c^{k-1}) \). Furthermore, \((b, c) = 1 \Rightarrow (b^{n-k}, c^k) = 1\). Thus,

\[
c^k | a_n b^k + a_{n-1} b^{k-1} c + \ldots + a_{n-k+1} b c^{k-1}.
\]

It follows that \(a_n r^k + a_{n-1} r^{k-1} + \ldots + a_{n-k+1} r \) is an integer for \(1 \leq k \leq n \).

8. Do there exist polynomials \(a(x), b(x), c(y), d(y) \) such that \(1 + xy + x^2 y^2 = a(x)c(y) + b(x)d(y) \)?

Solution: This is (Putnam ’03, B1)

Suppose that such polynomials exist. Then \(1 = c(0)a(x) + d(0)b(x), 1 + x + x^2 = c(1)a(x) + d(1)b(x), 1 - x + x^2 = c(-1)a(x) + d(-1)b(x) \). We have

\[
1 = c(0)a(x) + d(0)b(x),
\]
\[
x = \frac{c(1) - c(-1)}{2} a(x) + \frac{d(1) - d(-1)}{2} b(x),
\]
\[
x^2 = \frac{c(1) + c(-1) - 2c(0)}{2} a(x) + \frac{d(1) + d(-1) - 2d(0)}{2} b(x).
\]

So we have three linearly independent elements (the polynomials \(1, x, x^2 \)) in a subspace of dimension 2 (the vector space spanned by \(a(x) \) and \(b(x) \)). Contradiction.