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Concours Putnam
Atelier de Pratique

Le mercredi, 18 septembre 12h30-13h30
La salle 5448 Pav. André Aisenstad

1. Gryffindor fans tell the truth when Gryffindor wins and lie when it loses. Fans of
Hufflepuff, Ravenclaw, and Slytherin behave similarly. After two matches of quidditch
with the participation of these four teams (with no draws and each team playing exactly
one game), among the wizards who watched the broadcast, 500 answered positively to
the question “Do you support Gryffindor?”, 600 answered positively to the question
“Do you support Hufflepuff?”, 300 answered positively to the question “Do you support
Ravenclaw?”, and 200 answered positively to the question “Do you support Slytherin?”.
How many wizards support each of the teams? Note: Each wizard is fan of exactly one
of the teams.

Solution: Let A,B be the numbers of fans of the winning teams and C,D the
numbers of fans of the losing teams. Then the numbers of positive answers to the
question ”Do you support X” are A + C +D, B + C +D, D, and C, respectively.
Note that each of the latter two numbers is always less or equal to each of the former
two. So we conclude that Ravenclaw and Slytherin lost and had, respectively, 200
and 300 fans. This means that there were 500− 200− 300 = 0 Gryffindor fans and
there were 600− 200− 300 = 100 Hufflepuff fans.

2. Into how many regions do n lines divide the plane, assuming no two lines are parallel
and no three lines intersect in the same point?

Solution: The answer is n(n+1)
2

+ 1. We give two solutions.

#1. One observes that the number an of regions satisfies the recursive relation an =
an−1+n, n ≥ 1, since focusing on a given line l, we observe that it intersects exactly
n − 1 other lines, and hence itersects exactly n regions, splitting each one of them
into two. Together with a0 = 1, we have an = a0 +

∑n
j=1 j =

n(n+1)
2

+ 1.

#2. One considers the numbers V,E, F of, respectively, vertices given by intersection
points of the lines, edges into which the lines are subdivided by the intersection
points, and regions in the complement of the lines. If we focus only on the numbers
V,E ′, F ′ of vertices, bounded edges, and bounded regions, Euler’s formula for planar
graphs implies V − E ′ + F ′ = 1. We observe that −E + F = −E ′ + F ′, which gives
V − E + F = 1. Now V =

(
n
2

)
= n(n−1)

2
since each two lines intersect at precisely

one point, and E = n2 since each line is subdivided into precisely n edges. Hence
F = 1− V + E = 1− n2−n

2
+ n2 = n(n+1)

2
+ 1.
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Note: both the relations V − E ′ + F ′ = 1 and V − E + F = 1 can be obtained by
adding one unbounded face in the first case, and one vertex at infinity in the second
case, and using Euler’s formula

V − E + F = 2

for graphs in the (two-dimensional) sphere.

3. Find at least one positive integer that is at least 3 times smaller than the sum of its
positive proper divisors.

Solution: Observe 1/(2n + 1) + 1/(2n + 2) + . . .+ 1/2n+1 > 1/2, so we have 1/2 +
1/3+ . . .+1/64 > 3. Next, 64! is divisible by every integer between 2 and 64, so the
sum of its proper divisors is at least (1/2 + 1/3 + . . .+ 1/64) · 64! > 3 · 64!.

4. A certain country has finitely many cities. Any pair of these cities is connected by
a road. However, all roads in this country are one-way roads, and it is therefore not
always possible to travel from one city to another city. Show that the country has a city
(“capital”) that can be reached from every other city either directly or via exactly one
intermediate city.

Solution: We give three solutions: first relying on mathematical induction, second
relying on the technique of minimization, and third relying on both.

#1. We prove it by induction on n the number of cities. For two cities it is clear.
The induction step from n to n + 1 is shown as follows. Consider a city c′ in our
country C ′. Let C be the sub-country of C ′ obtained by forgetting the city c′ and
all roads ending or starting at it. By induction hypothesis, C has a capital c. We
claim that either c or c′ is a capital for C. If the road between c and c′ enters c, then
c is a capital. Similarly, if there is a road from a city c1, in C, to c, and the road
between c′ and c1 (in C ′) enters c1, then c is a capital. Hence if c is not a capital,
then there is a road from c to c′, and hence c′ can be reached from c or from any
city in C with that has a road to c, by a sequence of at most two roads. Moreover,
for each sequence of two roads c1 to c2, c2 to c (in C), which always exists as c is a
capital of C, there must be a road from c2 to c′, and hence a sequence of two roads
c1 to c2, c2 to c′. Hence c′ is a capital.

#2. (Inspired by solution of Julien Codsi) Let c be a city for which the number k
of roads entering it is maximal among the n cities. We claim that c is a capital.
Denote by c1, . . . , ck the cities from which there are roads entering c. For these cities
the capital condition (i.e. being able to reach c by a sequence of at most two roads)
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is clearly satisfied. Now note that the number l = n−k of roads exiting c is minimal
among the n cities. Hence for each city d other than c, c1, . . . , ck there are at least l
roads exiting it. However, since l + k + 1 = n + 1 > n, there must be at least one
road that exits d and enters one of the cities c, c1, . . . , ck, and therefore the capital
condition is satisfied for d. This proves our claim.

#3. We prove it by induction on n the number of cities. For two cities it is clear.
Denote the cities by c1, . . . , cn, and for each ci let Ai those cities cj for which the
road between ci and cj is from cj to ci, and Bi those where the road goes from ci to
cj. Assume the statement is true for n− 1. Pick a city ci for which the size of Ai is
minimal. Without loss of generality, assume it is cn. The induction hypothesis gives
a capital among c1, . . . , cn−1, say cn−1. If there is a road from cn to cn−1, there is
nothing to prove. If not, the road goes from cn−1 to cn and cn−1 belongs to An and
cn does NOT belong to An−1. Since An is of minimal size, there is an element of ci
of An−1 which does not belong to An. That means that there is a road from cn to ci
and a road from ci to cn−1. Thus cn−1 is the capital.

5. Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0.
Show that two points are separated by a distance of at least r1/3.

Solution: First notice that any triangle (which is assumed above to be non-degenerate)
with integer coordinates has area at least 1

2
. There are various ways to show this. For

example, this is trivial if one of the sides is parallel to one of the axes, and then, for
general triangles, one can show that it is always decompose them into such triangles.
In another way, one observes that area S of the triangle with vertices u, v, w ∈ R2 is
given by

S =
1

2
| det(v − u,w − u)|,

where v − u,w − u are considered as column vectors. Now if u, v, w have integer
coordinates, so do v − u,w − u, and hence 2S is a positive integer, whence 2S ≥ 1.

On the other hand, the area of a triangle of sides a, b, and c which is inscribed into
a circle of radius r is abc

4r
. To see this, start from the formula ab sin γ

2
where γ is the

angle between a and b, and use that c
sin γ

= 2r. Then we have

abc

4r
≥ 1

2

If we assume that a, b, c are less or equal to r1/3, we obtain 1
4
≥ 1

2
, a contradition.

Note: the fact that any triangle with integer coordinates has area at least 1
2
is

a particular case of Pick’s theorem: a lattice polygon whose boundary consists of
a sequence of connected nonintersecting straight-line segments has area i + b

2
− 1,

where i is the number of interior points, and b is the number of boundary points.
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6. Find the digit before the decimal point and the first two digits after the decimal point
in the decimal notation of (1 +

√
2)2024.

Solution: First, observe that (1 +
√
2)2024 + (1−

√
2)2024 is an integer and −1/2 <

(1−
√
2) < 0. So (1−

√
2)2024 is positive and smaller than 0.01, hence the first two

digits of (1 +
√
2)2024 after the decimal point are 99.

Next, the sequence of integers xn = (1+
√
2)n+(1−

√
2)n satisfies xn+1 = 2xn+xn−1,

so it is periodic modulo 10. The direct computation shows that the period length is
12. So the 2024th term of this sequence is the same as the 8th, and it is 4 modulo
10. Thus the last digit before the decimal point is 3.
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