Concours Putnam

Atelier de Pratique Le mercredi, 18 septembre 12h30-13h30 La salle 5448 Pav. André Aisenstad

Inequalities

Cauchy's Inequality

$$
\left(\sum a_i^2\right)\left(\sum b_i^2\right) \ge \left(\sum a_i b_i\right)^2
$$

$$
\left(\int f(x)^2 dx\right)\left(\int g(x)^2 dx v\right) \ge \left(\int f(x)g(x) dx\right)^2
$$

Arithmetic-Geometric Mean Inequality If $a_i \geq 0$,

$$
\frac{1}{n}\sum_{i=1}^{n}a_i \ge \left(\prod_{i=1}^{n}a_i\right)^{\frac{1}{n}}
$$

Jensen's inequality A real-valued function $f(x)$ is called convex if

$$
\frac{f(x_1) + f(x_2)}{2} \ge f\left(\frac{x_1 + x_2}{2}\right)
$$

for all real x_1, x_2 . If $f(x)$ is convex, and $p_i \geq 0$, $\sum p_i = 1$, then for any real x_i ,

$$
\sum p_i f(x_i) \ge f\left(\sum p_i x_i\right).
$$

1. Given n positive real numbers with sum 1, show that the sum of the squares of these numbers is at least $\frac{1}{n}$.

Solution: Apply Cauchy-Schwarz to the sum $1 = \sum_{i=1}^{n} 1 \cdot a_i$.

2. Given *n* positive real numbers a_1, \ldots, a_n , define

$$
H = n\left(\frac{1}{a_1} + \ldots + \frac{1}{a_n}\right)^{-1}.
$$

(This number H is called the **harmonic mean** of the numbers a_i .) Show that $H \leq G$, where $G = (a_1...a_n)^{\frac{1}{n}}$ is the geometric mean of the a_i 's.

Solution: Note that H is the reciprocal of the arithmetic mean of the numbers $b_i = \frac{1}{a_i}$ $\frac{1}{a_i}$, while G is the reciprocal of the geometric mean of these numbers. Then apply the Arithmetic-Geometric Mean (AGM) inequality.

Remark. In fact the following generalization holds. Consider the function

$$
F_0: \mathbb{R} \setminus \{0\} \to \mathbb{R}_{>0}
$$
 given by $F_0(t) = \left(\frac{1}{n} \sum_{i=1}^n (a_i)^t\right)^{\frac{1}{t}}$. Then

- 1. F_0 extends to a monotone increasing continuous function $F : \mathbb{R} \to \mathbb{R}_{>0}$, by setting $F(0) := (a_1 \cdot \ldots a_n)^{\frac{1}{n}}.$
- 2. $\lim_{t\to+\infty} F(t) = \max\{a_i\}, \lim_{t\to-\infty} F(t) = \min\{a_i\}.$
- 3. Let a_1, \ldots, a_n be positive integers, and let b_1, \ldots, b_n be a permutation of the a_i 's. Show that

$$
\sum_{i=1}^{n} \frac{a_i}{b_i} \ge n.
$$

Solution: Notice that $\prod_{i=1}^{n} \frac{a_i}{b_i}$ $\frac{a_i}{b_i} = 1$. Apply AGM to the numbers $\frac{a_i}{b_i}$.

4. Suppose f is a nonnegative function defined on the interval [0, 1] and satisfying $\int_0^1 f(x)^2 dx =$ 1. What is the maximum value of $\int_0^1 f(x)x^{2024} dx$?

Solution: Let I denote the integral $\int_0^1 f(x) x^{2024} dx$. Apply the integral version of Cauchy-Schwarz with the functions $f(x)$ and x^{2024} to get

$$
I^2 \le \int_0^1 f(x)^2 dx \int_0^1 x^{4048} dx = \frac{1}{4049}
$$

therefore, $I \n\t\leq \frac{1}{\sqrt{4049}}$. To show that this upper bound can be achieved, take f to be proportional to x^{2024} , i.e., $f(x) = cx^{2024}$ with $c = \sqrt{4049}$.

5. Let x_1, \ldots, x_n be real numbers with $0 < x_i < 1$, and let $x = (1/n) \sum_{i=1}^n x_i$ be the arithmetic mean of these numbers. Show that

$$
\left(\frac{\sin x}{x}\right)^n \ge \prod_{i=1}^n \left(\frac{\sin x_i}{x_i}\right)
$$

$$
n \log \left(\frac{\sin x}{x}\right) \ge \sum_{i=1}^n \log \left(\frac{\sin x_i}{x_i}\right).
$$

Note that $f(x) = \log((\sin x)/x) = \log(\sin x) - \log x$ is concave on $(0, 1)$, as

$$
f''(x) = \frac{1}{x^2} - \frac{1}{\sin^2 x} < 0
$$

The result now follows from Jensen's inequality.

6. Let u, v, w be real numbers. Show that

$$
\log\left(\frac{e^u + e^v + e^w}{3}\right) \ge \frac{u + v + w}{3}.
$$

When does equality hold?

Solution: Exponentiate both sides, then apply Jensen's inequality with the function $f(x) = e^x$ to get

$$
(1/3)(f(u) + f(v) + f(w)) \ge f((1/3)u + (1/3)v + (1/3)w).
$$

7. Suppose x_1, \ldots, x_n are positive real numbers with $\sum_{i=1}^n x_i = 1$. Show that

$$
\log \sum_{i=1}^{n} x_i^2 \ge \sum_{i=1}^{n} x_i \log x_i
$$

Solution: Apply Jensen's inequality with $f(x) = -\log x$ (which is convex since $log x$ is concave) and $p_i = x_i$.

8. Let k be a positive constant. The sequence x_i of positive reals has sum k. What are the possible values for the sum of x_i^2 ?

Solution: This is (Putnam '00, A1). The answer is any value in the open interval $(0, k^2]$.

Since the terms are positive we have,

$$
0 < \sum x_i^2 \le (\sum x_i)^2 = k^2
$$

So certainly all sums must lie in the interval $(0, k^2]$.

We show how to get any value in the interval by explicit construction. We may represent the value as hk^2 where $0 < h \leq 1$. Take $c = \frac{1-h}{1+h}$ $\frac{1-h}{1+h}$. Take the geometric sequence with first term $k(1-c)$ and ratio c, i.e., $(k(1-c), \overline{kc}(1-c), \overline{kc^2}(1-c), \ldots)$. We have $\sum x_i = k$ as required, and $\sum x_i^2 = k^2(1-c)^2/(1-c^2) = hk^2$ as required.

9. Prove the following inequality for all $a_i > 0$

$$
\prod_{i=1}^n a_i^{a_i} \ge \big(\frac{1}{n}\sum_{i=1}^n a_i\big)^{\sum\limits_{i=1}^n a_i}
$$

Solution: Taking logarithms of both parts and dividing by n , we get to Jensen inequality for the function $x \log x$. The latter is convex since its second derivative is $\frac{1}{x} > 0.$