R. G. Owens and
T. N. Phillips. *Computational Rheology*, Imperial College Press/World
Scientific, 2002 and 2005. (ISBN 1-86094-186-9)

A. Lozinski, R.
G. Owens and T. N. Phillips, The Langevin and Fokker-Planck Equations in
Polymer Rheology, in Philippe Ciarlet, Roland Glowinski and J. Xu (eds.) *Numerical Methods for Non-Newtonian Fluids*, *Handbook of
Numerical Analysis XVI**,* pp. 211-303, Elsevier
North-Holland, 2011. (ISBN 978-0-444-53047-9)

A. Robertson, A. Séqueira
and R. G. Owens, Chapter 6: Rheological Models for Blood, in L. Formaggia et
al. (eds.), *Cardiovascular Mathematics. Modeling and simulation of the
circulation system**, *pp. 211-241, Springer-Verlag, 2009.
(ISBN 978-88-470-1151-9)

F. De l’Isle and
R. G. Owens, Superconsistent collocation methods with applications to
convection-dominated convection-diffusion equations, submitted for publication
(2019).

K. Behrouzi, Z. K. Fard, A. Jafari and R. G. Owens, On the modelling and numerical simulation of non-Newtonian blood flow in an aneurysm, submitted for publication (2019).

M. Bennoune, J.
Morin-Drouin and R. G. Owens, On the
jump conditions for the immersed interface method. SIAM J. Sci.
Comput. **38**(3) (2016) A1280-A1316.

Y. Tawfik and R. G. Owens, A mathematical and numerical investigation of the hemodynamical
origins of oscillations in microvascular networks. *Bull. Math.
Biol.* **75** (2013) 676-707.

R. K. Noutcheuwa
and R. G. Owens, A new incompressible smoothed particle hydrodynamics-immersed boundary
method. *Int. J. Numer. Anal. Mod. B* **3** (2012)
126-167.

R. K. Noutcheuwa
and R. G. Owens, A mixed Brownian dynamics - SPH method for the simulation of
flows of suspensions of bead-spring chains in confined geometries with
hydrodynamic interaction. *J. Non-Newtonian Fluid Mech.,* **166**
(2011) 1327-1346.

A. Lozinski and
R. G. Owens, Some remarks on the equivalence of Kirkwood's diffusion equation
and the coupled fluctuating polymer and solvent kinetic equations of Oono and
Freed. *J. Non-Newtonian Fluid Mech.*, **166** (2011) 1297-1303.

A. Iolov, Y.
Bourgault, A. S. Kane, R. G. Owens and A. Fortin, A finite element method for a
microstructure-based model of blood. *Int. J. Numer. Meth. Biomed. Engrg.,*
**27** (2011) 1321-1349.

M. A.
Moyers-Gonzalez and R. G. Owens, Mathematical modelling of the cell-depleted
peripheral layer in the steady flow of blood in a tube. *Biorheology* **47**
(2010) 39-71.

P. Degond, A.
Lozinski and R. G. Owens, Kinetic models for dilute solutions of dumbbells in
non-homogeneous flows revisited. *J. Non-Newtonian Fluid Mech.*, **165**
(2010) 509-518.

M. A.
Moyers-Gonzalez, R. G. Owens and J. Fang, On the high frequency oscillatory
tube flow of healthy human blood. *J. Non-Newtonian Fluid Mech.*, **163**
(2009) 45-61.

M. A.
Moyers-Gonzalez, R. G. Owens and J. Fang, A non-homogeneous constitutive model
for human blood. Part III: Oscillatory flow. *J. Non-Newtonian Fluid Mech.*,
**155** (2008) 161-173.

M. A. Moyers-Gonzalez and R.
G. Owens, A non-homogeneous constitutive model for human blood. Part II:
Asymptotic solution for large Péclet numbers. *J. Non-Newtonian Fluid Mech.*,
**155** (2008) 146-160.

M. A. Moyers-Gonzalez, R. G.
Owens and J. Fang, A non-homogeneous constitutive model for human blood. Part
I: Model derivation and steady flow. *J. Fluid Mech.*, **617** (2008)
327-354.

É. Brunelle, R. G. Owens and
H. J. van Roessel, Gelation time in the discrete coagulation-fragmentation
equations with a bilinear coagulation kernel, *J. Phys. A: Math. Theor.*, **40**
(2007) 11749-11764.

R. G. Owens, A new
microstructure-based constitutive model for human blood. *J. Non-Newtonian
Fluid Mech.*, **140** (2006) 57-70.

J. Fang, R. G. Owens, L.
Tacher and A. Parriaux, A numerical study of the SPH method for simulating
transient viscoelastic free surface flows, *J. Non-Newtonian Fluid Mech.*,
**139** (2006) 68-84.

J. Fang and R. G. Owens,
Numerical simulations of pulsatile blood flow using a new constitutive model, *Biorheology*,
**43** (2006) 637-660.

J. Fang and R. G. Owens, New
constitutive equations derived from a kinetic model for melts and concentrated
solutions of linear polymers. *Rheol. Acta, ***44** (2005) 577-590.

M. Sahin and R. G. Owens, On
the effects of viscoelasticity on two-dimensional vortex dynamics in the
cylinder wake. *J. Non-Newtonian Fluid Mech.*, **123** (2004) 121-139.

A. Lozinski, R. G. Owens and
J. Fang, A Fokker-Planck-based numerical method for modelling non-homogeneous
flows of dilute polymer solutions. *J. Non-Newtonian Fluid Mech.*, **122**
(2004) 322-335.

M. Sahin and R. G. Owens, An
investigation of wall effects up to high blockage ratios on two-dimensional
flow past a confined cylinder. *Physics of Fluids*, **16** (2004)
1305-1320.

J. Fang, A. Lozinski and R.
G. Owens, Towards more realistic kinetic models for concentrated solutions and
melts. *J. Non-Newtonian Fluid Mech.*, **122** (2004) 128-139.

A. Lozinski and R. G. Owens,
An energy estimate for the Oldroyd B model: Theory and applications, *J.
Non-Newtonian Fluid Mech.*, **112** (2003) 161-176.

A. Lozinski, C. Chauvière,
J. Fang and R. G. Owens, A Fokker-Planck simulation of fast flows of
concentrated polymer solutions in complex geometries, *J. Rheol.*, **47**
(2003) 535-561.

M. Sahin and R. G. Owens , A
novel fully-implicit finite volume method applied to the lid-driven cavity
problem. Part II. Linear stability analysis, *Int. J. Numer. Meth. Fluids*,
**42** (2003) 79-88.

M. Sahin and R. G. Owens , A
novel fully-implicit finite volume method applied to the lid-driven cavity
problem. Part I. High Reynolds number flow calculations, *Int. J. Numer.
Meth. Fluids*, **42** (2003) 57-77.

R. G. Owens, C. Chauvière
and T. N. Phillips, A locally-upwinded spectral technique (LUST) for viscoelastic
flows, *J. Non-Newtonian Fluid Mech.*, **108** (2002) 49-72.

A. Lozinski, R. G. Owens and
A. Quarteroni, On the simulation of unsteady flow of an Oldroyd-B fluid by
spectral methods, *J. Sci. Comput.*, **17** (2002) 407-416.

C. Chauvière and R. G.
Owens, A robust spectral element method for simulations of time-dependent
viscoelastic flows, derived from the Brownian configuration field method, *J.
Sci. Comput.* **17** (2002) 209-218.

C. Bernardi, N. Fiétier and
R. G. Owens, An error indicator for mortar element solutions to the Stokes
problem, *IMA J. Num. Anal.*, **21** (2001) 857-886.

C. Chauvière and R. G.
Owens, A new spectral element method for the reliable computation of
viscoelastic flow . *Comp. Meth. Appl. Mech. Engrg.*, **190** (2001)
3999-4018.

C. Chauvière and R. G.
Owens, How accurate is your solution? Error indicators for viscoelastic flow
calculations , *J. Non-Newtonian Fluid Mech.*, **95** (2000) 1-33.

J. Valenciano and R. G.
Owens, An h-p adaptive spectral element method for Stokes flow, *Appl. Numer.
Math.*, **33** (2000) 365-371.

J. Valenciano and R. G.
Owens, A new adaptive modification strategy for numerical solutions to elliptic
boundary value problems, *Appl. Numer. Math.*, **32** (2000) 305-329.

R. G. Owens, A posteriori error
estimates for spectral element solutions to viscoelastic flow problems, *Comp.
Meth. Appl. Mech. Engrg.*, **164** (1998) 375-395.

R. G. Owens,
Spectral approximations on the triangle, *Proc. Roy. Soc. Lond. A*, **454**
(1998) 857-872.

T. N. Phillips and R. G.
Owens, A mass conserving multidomain spectral collocation method for the Stokes
problem, *Computers and Fluids*, **26** (1997) 825-840.

R. G. Owens and T. N.
Phillips, Steady viscoelastic flow past a sphere using spectral elements, *Int.
J. Num. Meth. Engrg.*, **39** (1996) 1517-1534.

R. G. Owens and T. N.
Phillips, Mass- and momentum conserving spectral methods for Stokes flow, *J.
Comp. Appl. Math.*, **53** (1994) 185-206.

R. G. Owens and T. N.
Phillips, Compatible pseudospectral approximations for incompressible flow in
an undulating tube, *J. Rheol.*, **37** (1993) 1181-1199.

A. Askar, R. G. Owens and H.
A. Rabitz, Molecular dynamics with Langevin equation using local harmonics and
Chandrasekhar's convolution, *J. Chem. Phys.*, **99** (1993) 5316-5325.

R. G. Owens and T. N.
Phillips, A spectral domain decomposition method for the planar non-Newtonian
stick-slip problem, *J. Non-Newtonian Fluid Mech.*, **41** (1991)
43-79.

P. Delaunay, A.
Lozinski and R. G. Owens, Sparse tensor-product Fokker-Planck-based methods for
nonlinear bead-spring chain models of dilute polymer solutions,* CRM
Proceedings and Lecture Notes ***41*** *(2007) 73-89.

C. Chauvière and
R. G. Owens , Wiggle-free spectral element methods for non-Newtonian flows, *Proceedings
of the 16th IMACS World Congress*, Eds. M. Deville and R. G. Owens,
Lausanne, Switzerland (2000).

R. G. Owens and
T. N. Phillips , Decoupled spectral element methods for steady viscoelastic flow
past a sphere, Proceedings of ICOSAHOM.95, *Houston J. Math.*, (1996)
287-294.

R. G. Owens and
T. N. Phillips , A pseudospectral element method for steady viscoelastic flow
around a sphere in a tube, *Proceedings of the Fourth European Rheology
Conference*, Steinkopff Verlag, Darmstadt, (1994) 359-361.

A. S. Kane, Y. Bourgault, A. Iolov, R. G. Owens and A. Fortin, Computation of blood flows accounting for red-blood cell aggregation/fragmentation, Proceedings of the Seventh International Symposium on Turbulence and Shear Flow Phenomena (TSFP-7), 2011, 6 pages.

A. Iolov, Y. Bourgault, A. Fortin, A. Kane and R. G. Owens, Finite element methods for a mesoscopic constitutive model of blood, 1st International Conference on Mathematical and Computational Biomedical Engineering (CMBE2009), Swansea, UK, June 29-July 1, 2009, 4 pages.

C. Chauvière, J.
Fang, A. Lozinski and R. G. Owens, On the numerical simulation of flows of
polymer solutions using high-order methods based on the Fokker-Planck equation.
*Int. J. Mod. Phys. B.* **17** (2003) 9-14.