R. G. Owens and T. N. Phillips. Computational Rheology, Imperial College Press/World Scientific, 2002 and 2005. (ISBN 1-86094-186-9)
A. Lozinski, R. G. Owens and T. N. Phillips, The Langevin and
Fokker-Planck Equations in Polymer Rheology, in Philippe Ciarlet,
Roland Glowinski and J. Xu (eds.) Numerical Methods for Non-Newtonian Fluids, Handbook of
Numerical Analysis XVI, pp. 211-303, Elsevier
North-Holland, 2011. (ISBN 978-0-444-53047-9)
A. Robertson, A. Séqueira and R. G. Owens, Chapter 6: Rheological Models for
Blood, in L. Formaggia et al. (eds.), Cardiovascular Mathematics. Modeling and simulation of the
circulation system, pp. 211-241, Springer-Verlag, 2009.
(ISBN 978-88-470-1151-9)
L. Gobet
and R. G. Owens, A
novel boundary integral method for slow free surface flows, WIT
Transactions on Engineering Sciences 135 (2023) 123-145.
F. De l’Isle and
R. G. Owens, A
superconsistent collocation method for high Reynolds
number flows, Computers & Fluids
259 (2023) 105897.
R. G. Owens, The
separation angle of the free surface of a viscous fluid at a straight edge,
J. Fluid Mech. 942 (2022) A50-1—A50-31.
F. De l’Isle and R. G. Owens, Superconsistent collocation methods with
applications to convection-dominated convection-diffusion equations, J. Comp. Appl. Math. 391
(2021) 113367.
K. Behrouzi, Z. K. Fard, A. Jafari and R. G. Owens, On the modelling and numerical simulation of non-Newtonian blood flow in an aneurysm, preprint (2019).
M. Bennoune, J. Morin-Drouin and R. G. Owens, On the jump conditions for the immersed interface method. SIAM J. Sci. Comput. 38(3) (2016) A1280-A1316.
Y. Tawfik and R. G. Owens, A mathematical and numerical investigation of the hemodynamical origins of oscillations in microvascular networks. Bull. Math. Biol. 75 (2013) 676-707.
R. K. Noutcheuwa and R. G. Owens, A new incompressible smoothed particle hydrodynamics-immersed boundary method. Int. J. Numer. Anal. Mod. B 3 (2012) 126-167.
R. K. Noutcheuwa and R. G. Owens, A mixed Brownian dynamics - SPH method for the simulation of flows of suspensions of bead-spring chains in confined geometries with hydrodynamic interaction. J. Non-Newtonian Fluid Mech., 166 (2011) 1327-1346.
A. Iolov, Y. Bourgault, A. S. Kane,
R. G. Owens and A. Fortin, A finite element method for a microstructure-based
model of blood. Int. J. Numer. Meth. Biomed. Engrg., 27 (2011) 1321-1349.
A. Lozinski and R. G. Owens, Some remarks on the equivalence of Kirkwood's diffusion equation and the coupled fluctuating polymer and solvent kinetic equations of Oono and Freed. J. Non-Newtonian Fluid Mech., 166 (2011) 1297-1303.
M. A. Moyers-Gonzalez and R. G. Owens, Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube. Biorheology 47 (2010) 39-71.
P. Degond, A. Lozinski and R. G. Owens, Kinetic models for dilute solutions of dumbbells in non-homogeneous flows revisited. J. Non-Newtonian Fluid Mech., 165 (2010) 509-518.
M. A. Moyers-Gonzalez, R. G. Owens and J. Fang, On the high frequency oscillatory tube flow of healthy human blood. J. Non-Newtonian Fluid Mech., 163 (2009) 45-61.
M. A. Moyers-Gonzalez,
R. G. Owens and J. Fang, A non-homogeneous constitutive model for human blood.
Part III: Oscillatory flow. J. Non-Newtonian Fluid Mech., 155
(2008) 161-173.
M. A. Moyers-Gonzalez and R.
G. Owens, A non-homogeneous constitutive model for human blood. Part II:
Asymptotic solution for large Péclet numbers. J.
Non-Newtonian Fluid Mech., 155 (2008) 146-160.
M. A. Moyers-Gonzalez, R. G.
Owens and J. Fang, A non-homogeneous constitutive model for human blood. Part
I: Model derivation and steady flow. J. Fluid Mech., 617 (2008)
327-354.
É. Brunelle, R. G. Owens and
H. J. van Roessel, Gelation time in the discrete
coagulation-fragmentation equations with a bilinear coagulation kernel, J.
Phys. A: Math. Theor., 40 (2007)
11749-11764.
P. Delaunay, A. Lozinski and R. G. Owens, Sparse tensor-product Fokker-Planck-based methods for nonlinear bead-spring chain models of dilute polymer solutions, CRM Proceedings and Lecture Notes 41 (2007) 73-89.
R. G. Owens, A
new microstructure-based constitutive model for human blood. J.
Non-Newtonian Fluid Mech., 140 (2006) 57-70.
J. Fang, R. G. Owens, L. Tacher and A. Parriaux, A
numerical study of the SPH method for simulating transient viscoelastic free
surface flows, J. Non-Newtonian Fluid Mech., 139 (2006) 68-84.
J. Fang and R. G. Owens,
Numerical simulations of pulsatile blood flow using a new constitutive model, Biorheology,
43 (2006) 637-660.
J. Fang and R. G. Owens, New
constitutive equations derived from a kinetic model for melts and concentrated
solutions of linear polymers. Rheol. Acta, 44
(2005) 577-590.
M. Sahin
and R. G. Owens, On the effects of viscoelasticity on two-dimensional vortex
dynamics in the cylinder wake. J. Non-Newtonian Fluid Mech., 123
(2004) 121-139.
A. Lozinski,
R. G. Owens and J. Fang, A Fokker-Planck-based numerical method for modelling
non-homogeneous flows of dilute polymer solutions. J. Non-Newtonian Fluid
Mech., 122 (2004) 322-335.
M. Sahin
and R. G. Owens, An investigation of wall effects up to high blockage ratios on
two-dimensional flow past a confined cylinder. Physics of Fluids, 16
(2004) 1305-1320.
J. Fang, A. Lozinski and R. G. Owens, Towards more realistic kinetic
models for concentrated solutions and melts. J. Non-Newtonian Fluid Mech.,
122 (2004) 128-139.
A. Lozinski
and R. G. Owens, An energy estimate for the Oldroyd B
model: Theory and applications, J. Non-Newtonian Fluid Mech., 112
(2003) 161-176.
A. Lozinski,
C. Chauvière, J. Fang and R. G. Owens, A Fokker-Planck
simulation of fast flows of concentrated polymer solutions in complex
geometries, J. Rheol., 47 (2003)
535-561.
M. Sahin
and R. G. Owens , A novel fully-implicit finite volume method applied to the
lid-driven cavity problem. Part II. Linear stability analysis, Int. J. Numer. Meth. Fluids, 42 (2003) 79-88.
M. Sahin
and R. G. Owens , A novel fully-implicit finite volume method applied to the
lid-driven cavity problem. Part I. High Reynolds number flow calculations, Int.
J. Numer. Meth. Fluids, 42 (2003) 57-77.
R. G. Owens, C. Chauvière and T. N. Phillips, A locally-upwinded
spectral technique (LUST) for viscoelastic flows, J. Non-Newtonian Fluid
Mech., 108 (2002) 49-72.
A. Lozinski,
R. G. Owens and A. Quarteroni, On the simulation of
unsteady flow of an Oldroyd-B fluid by spectral
methods, J. Sci. Comput., 17 (2002)
407-416.
C. Chauvière
and R. G. Owens, A robust spectral element method for simulations of
time-dependent viscoelastic flows, derived from the Brownian configuration
field method, J. Sci. Comput. 17 (2002)
209-218.
C. Bernardi,
N. Fiétier and R. G. Owens, An error indicator for
mortar element solutions to the Stokes problem, IMA J. Num. Anal., 21
(2001) 857-886.
C. Chauvière
and R. G. Owens, A new spectral element method for the reliable computation of
viscoelastic flow . Comp. Meth. Appl. Mech. Engrg.,
190 (2001) 3999-4018.
C. Chauvière
and R. G. Owens, How accurate is your solution? Error indicators for
viscoelastic flow calculations , J. Non-Newtonian Fluid Mech., 95
(2000) 1-33.
C. Chauvière and R. G. Owens , Wiggle-free spectral element methods for non-Newtonian flows, Proceedings of the 16th IMACS World Congress, Eds. M. Deville and R. G. Owens, Lausanne, Switzerland (2000).
J. Valenciano
and R. G. Owens, An h-p adaptive spectral element method for Stokes flow, Appl.
Numer. Math., 33 (2000) 365-371.
J. Valenciano and R. G.
Owens, A new adaptive modification strategy for numerical solutions to elliptic
boundary value problems, Appl. Numer. Math., 32
(2000) 305-329.
R. G. Owens, A posteriori
error estimates for spectral element solutions to viscoelastic flow problems, Comp.
Meth. Appl. Mech. Engrg., 164 (1998)
375-395.
R. G. Owens,
Spectral approximations on the triangle, Proc. Roy. Soc. Lond.
A, 454 (1998) 857-872.
T. N. Phillips and R. G.
Owens, A mass conserving multidomain spectral collocation method for the Stokes
problem, Computers and Fluids, 26 (1997) 825-840.
R. G. Owens and T. N. Phillips , Decoupled spectral element methods for steady viscoelastic flow past a sphere, Proceedings of ICOSAHOM.95, Houston J. Math., (1996) 287-294.
R. G. Owens and
T. N. Phillips, Steady viscoelastic flow past a sphere using spectral elements,
Int. J. Num. Meth. Engrg., 39 (1996)
1517-1534.
R. G. Owens and T. N.
Phillips, A pseudospectral element method for steady
viscoelastic flow around a sphere in a tube, Proceedings of the Fourth
European Rheology Conference, Steinkopff Verlag,
Darmstadt, (1994) 359-361.
R. G. Owens and
T. N. Phillips, Mass- and momentum conserving spectral methods for Stokes flow,
J. Comp. Appl. Math., 53 (1994) 185-206.
R. G. Owens and T. N.
Phillips, Compatible pseudospectral approximations
for incompressible flow in an undulating tube, J. Rheol.,
37 (1993) 1181-1199.
A. Askar, R. G. Owens and H.
A. Rabitz, Molecular dynamics with Langevin equation
using local harmonics and Chandrasekhar's convolution, J. Chem. Phys., 99
(1993) 5316-5325.
R. G. Owens and T. N.
Phillips, A spectral domain decomposition method for the planar non-Newtonian
stick-slip problem, J. Non-Newtonian Fluid Mech., 41 (1991)
43-79.
A. S. Kane, Y. Bourgault, A. Iolov, R. G. Owens and A. Fortin, Computation of blood flows accounting for red-blood cell aggregation/fragmentation, Proceedings of the Seventh International Symposium on Turbulence and Shear Flow Phenomena (TSFP-7), 2011, 6 pages.
A. Iolov, Y. Bourgault, A. Fortin,
A. Kane and R. G. Owens, Finite element methods for a mesoscopic constitutive
model of blood, 1st International Conference on Mathematical and Computational
Biomedical Engineering (CMBE2009), Swansea, UK, June 29-July 1, 2009, 4 pages.
C. Chauvière, J. Fang, A. Lozinski
and R. G. Owens, On the numerical simulation of flows of polymer solutions
using high-order methods based on the Fokker-Planck equation. Int. J. Mod. Phys. B. 17 (2003) 9-14.
R. G. Owens, Report
on the XIIIth International Workshop on Numerical Methods
for Non-Newtonian Flows, Applied Rheology, 13 (2003) 216-217.