Livres 

R. G. Owens and T. N. Phillips. Computational Rheology, Imperial College Press/World Scientific, 2002 and 2005. (ISBN 1-86094-186-9)

Chapitres de livres 

A. Lozinski, R. G. Owens and T. N. Phillips, The Langevin and Fokker-Planck Equations in Polymer Rheology, in Philippe Ciarlet, Roland Glowinski and J. Xu (eds.) Numerical Methods for Non-Newtonian Fluids, Handbook of Numerical Analysis XVI, pp. 211-303, Elsevier North-Holland, 2011. (ISBN 978-0-444-53047-9)

A. Robertson, A. Séqueira and R. G. Owens, Chapter 6: Rheological Models for Blood, in L. Formaggia et al. (eds.), Cardiovascular Mathematics. Modeling and simulation of the circulation system, pp. 211-241, Springer-Verlag, 2009. (ISBN 978-88-470-1151-9)

 

Articles et actes avec comité de lecture

L. Gobet and R. G. Owens, A novel boundary integral method for slow free surface flows, WIT Transactions on Engineering Sciences 135 (2023) 123-145.

F. De l’Isle and R. G. Owens, A superconsistent collocation method for high Reynolds number flows, Computers & Fluids 259 (2023) 105897.

 

R. G. Owens, The separation angle of the free surface of a viscous fluid at a straight edge, J. Fluid Mech. 942 (2022) A50-1—A50-31.

 

F. De l’Isle and R. G. Owens, Superconsistent collocation methods with applications to convection-dominated convection-diffusion equations, J. Comp. Appl. Math. 391 (2021) 113367.

 

K. Behrouzi, Z. K. Fard, A. Jafari and R. G. Owens, On the modelling and numerical simulation of non-Newtonian blood flow in an aneurysm, preprint (2019).

 

M. Bennoune, J. Morin-Drouin and R. G. Owens, On the jump conditions for the immersed interface method. SIAM J. Sci. Comput. 38(3) (2016) A1280-A1316.

Y. Tawfik and R. G. Owens, A mathematical and numerical investigation of the hemodynamical origins of oscillations in microvascular networks. Bull. Math. Biol. 75 (2013) 676-707.

R. K. Noutcheuwa and R. G. Owens, A new incompressible smoothed particle hydrodynamics-immersed boundary method. Int. J. Numer. Anal. Mod. B  3 (2012) 126-167.

R. K. Noutcheuwa and R. G. Owens, A mixed Brownian dynamics - SPH method for the simulation of flows of suspensions of bead-spring chains in confined geometries with hydrodynamic interaction. J. Non-Newtonian Fluid Mech., 166 (2011) 1327-1346. 

A. Iolov, Y. Bourgault, A. S. Kane, R. G. Owens and A. Fortin, A finite element method for a microstructure-based model of blood. Int. J. Numer. Meth. Biomed. Engrg., 27 (2011) 1321-1349. 

 

A. Lozinski and R. G. Owens, Some remarks on the equivalence of Kirkwood's diffusion equation and the coupled fluctuating polymer and solvent kinetic equations of Oono and Freed. J. Non-Newtonian Fluid Mech., 166 (2011) 1297-1303. 

 

M. A. Moyers-Gonzalez and R. G. Owens, Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube. Biorheology 47 (2010) 39-71.

P. Degond, A. Lozinski and R. G. Owens, Kinetic models for dilute solutions of dumbbells in non-homogeneous flows revisited. J. Non-Newtonian Fluid Mech., 165 (2010) 509-518. 

M. A. Moyers-Gonzalez, R. G. Owens and J. Fang, On the high frequency oscillatory tube flow of healthy human blood. J. Non-Newtonian Fluid Mech., 163 (2009) 45-61. 

M. A. Moyers-Gonzalez, R. G. Owens and J. Fang, A non-homogeneous constitutive model for human blood. Part III: Oscillatory flow. J. Non-Newtonian Fluid Mech., 155 (2008) 161-173.

M. A. Moyers-Gonzalez and R. G. Owens, A non-homogeneous constitutive model for human blood. Part II: Asymptotic solution for large Péclet numbers. J. Non-Newtonian Fluid Mech., 155 (2008) 146-160.

M. A. Moyers-Gonzalez, R. G. Owens and J. Fang, A non-homogeneous constitutive model for human blood. Part I: Model derivation and steady flow. J. Fluid Mech., 617 (2008) 327-354.

É. Brunelle, R. G. Owens and H. J. van Roessel, Gelation time in the discrete coagulation-fragmentation equations with a bilinear coagulation kernel, J. Phys. A: Math. Theor., 40 (2007) 11749-11764.

P. Delaunay, A. Lozinski and R. G. Owens, Sparse tensor-product Fokker-Planck-based methods for nonlinear bead-spring chain models of dilute polymer solutions,  CRM Proceedings and Lecture Notes 41 (2007) 73-89.

R. G. Owens, A new microstructure-based constitutive model for human blood. J. Non-Newtonian Fluid Mech., 140 (2006) 57-70.

J. Fang, R. G. Owens, L. Tacher and A. Parriaux, A numerical study of the SPH method for simulating transient viscoelastic free surface flows, J. Non-Newtonian Fluid Mech., 139 (2006) 68-84.

J. Fang and R. G. Owens, Numerical simulations of pulsatile blood flow using a new constitutive model, Biorheology, 43 (2006) 637-660.

J. Fang and R. G. Owens, New constitutive equations derived from a kinetic model for melts and concentrated solutions of linear polymers. Rheol. Acta, 44 (2005) 577-590.

M. Sahin and R. G. Owens, On the effects of viscoelasticity on two-dimensional vortex dynamics in the cylinder wake. J. Non-Newtonian Fluid Mech., 123 (2004) 121-139.

A. Lozinski, R. G. Owens and J. Fang, A Fokker-Planck-based numerical method for modelling non-homogeneous flows of dilute polymer solutions. J. Non-Newtonian Fluid Mech., 122 (2004) 322-335.

M. Sahin and R. G. Owens, An investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined cylinder. Physics of Fluids, 16 (2004) 1305-1320.

J. Fang, A. Lozinski and R. G. Owens, Towards more realistic kinetic models for concentrated solutions and melts. J. Non-Newtonian Fluid Mech., 122 (2004) 128-139.

A. Lozinski and R. G. Owens, An energy estimate for the Oldroyd B model: Theory and applications, J. Non-Newtonian Fluid Mech., 112 (2003) 161-176.

A. Lozinski, C. Chauvière, J. Fang and R. G. Owens, A Fokker-Planck simulation of fast flows of concentrated polymer solutions in complex geometries, J. Rheol., 47 (2003) 535-561.

M. Sahin and R. G. Owens , A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Part II. Linear stability analysis, Int. J. Numer. Meth. Fluids, 42 (2003) 79-88.

M. Sahin and R. G. Owens , A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Part I. High Reynolds number flow calculations, Int. J. Numer. Meth. Fluids, 42 (2003) 57-77.

R. G. Owens, C. Chauvière and T. N. Phillips, A locally-upwinded spectral technique (LUST) for viscoelastic flows, J. Non-Newtonian Fluid Mech., 108 (2002) 49-72.

A. Lozinski, R. G. Owens and A. Quarteroni, On the simulation of unsteady flow of an Oldroyd-B fluid by spectral methods, J. Sci. Comput., 17 (2002) 407-416.

C. Chauvière and R. G. Owens, A robust spectral element method for simulations of time-dependent viscoelastic flows, derived from the Brownian configuration field method, J. Sci. Comput. 17 (2002) 209-218.

C. Bernardi, N. Fiétier and R. G. Owens, An error indicator for mortar element solutions to the Stokes problem, IMA J. Num. Anal., 21 (2001) 857-886.

C. Chauvière and R. G. Owens, A new spectral element method for the reliable computation of viscoelastic flow . Comp. Meth. Appl. Mech. Engrg., 190 (2001) 3999-4018.

C. Chauvière and R. G. Owens, How accurate is your solution? Error indicators for viscoelastic flow calculations , J. Non-Newtonian Fluid Mech., 95 (2000) 1-33.

C. Chauvière and R. G. Owens , Wiggle-free spectral element methods for non-Newtonian flows, Proceedings of the 16th IMACS World Congress, Eds. M. Deville and R. G. Owens, Lausanne, Switzerland (2000). 

J. Valenciano and R. G. Owens, An h-p adaptive spectral element method for Stokes flow, Appl. Numer. Math., 33 (2000) 365-371.

J. Valenciano and R. G. Owens, A new adaptive modification strategy for numerical solutions to elliptic boundary value problems, Appl. Numer. Math., 32 (2000) 305-329.

R. G. Owens, A posteriori error estimates for spectral element solutions to viscoelastic flow problems, Comp. Meth. Appl. Mech. Engrg., 164 (1998) 375-395. 

R. G. Owens, Spectral approximations on the triangle, Proc. Roy. Soc. Lond. A, 454 (1998) 857-872.

T. N. Phillips and R. G. Owens, A mass conserving multidomain spectral collocation method for the Stokes problem, Computers and Fluids, 26 (1997) 825-840.

R. G. Owens and T. N. Phillips , Decoupled spectral element methods for steady viscoelastic flow past a sphere, Proceedings of ICOSAHOM.95, Houston J. Math., (1996) 287-294. 

R. G. Owens and T. N. Phillips, Steady viscoelastic flow past a sphere using spectral elements, Int. J. Num. Meth. Engrg., 39 (1996) 1517-1534.

R. G. Owens and T. N. Phillips, A pseudospectral element method for steady viscoelastic flow around a sphere in a tube, Proceedings of the Fourth European Rheology Conference, Steinkopff Verlag, Darmstadt, (1994) 359-361. 

R. G. Owens and T. N. Phillips, Mass- and momentum conserving spectral methods for Stokes flow, J. Comp. Appl. Math., 53 (1994) 185-206.

R. G. Owens and T. N. Phillips, Compatible pseudospectral approximations for incompressible flow in an undulating tube, J. Rheol., 37 (1993) 1181-1199.

A. Askar, R. G. Owens and H. A. Rabitz, Molecular dynamics with Langevin equation using local harmonics and Chandrasekhar's convolution, J. Chem. Phys., 99 (1993) 5316-5325.

R. G. Owens and T. N. Phillips, A spectral domain decomposition method for the planar non-Newtonian stick-slip problem, J. Non-Newtonian Fluid Mech., 41 (1991) 43-79. 

Actes sans comité de lecture 

A. S. Kane, Y. Bourgault, A. Iolov, R. G. Owens and A. Fortin, Computation of blood flows accounting for red-blood cell aggregation/fragmentation, Proceedings of the Seventh International Symposium on Turbulence and Shear Flow Phenomena (TSFP-7), 2011, 6 pages. 

A. Iolov, Y. Bourgault, A. Fortin, A. Kane and R. G. Owens, Finite element methods for a mesoscopic constitutive model of blood, 1st International Conference on Mathematical and Computational Biomedical Engineering (CMBE2009), Swansea, UK, June 29-July 1, 2009, 4 pages.

 

C. Chauvière, J. Fang, A. Lozinski and R. G. Owens, On the numerical simulation of flows of polymer solutions using high-order methods based on the Fokker-Planck equation. Int. J. Mod. Phys. B. 17 (2003) 9-14. 

Rapport

R. G. Owens, Report on the XIIIth International Workshop on Numerical Methods for Non-Newtonian Flows, Applied Rheology, 13 (2003) 216-217.