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Introduction

The theory of [-adic representations is one that finds great importance in
several famous results in Number Theory, including Wiles’ proof of Fermat’s
Last Theorem. This essay is an exposition of the theory of Abelian [-adic
representations of number fields, as laid out by Serre in [9]. The broad aim
is to construct a system of Abelian [-adic representations and show that any
Abelian [-adic representation that satisfies certain properties is obtained from
this construction. We begin with a quick introduction to algebraic groups
and their associated characters. This is followed by an overview of represen-
tations of algebraic groups and groups of multiplicative type, presenting key
results that shall be called upon extensively in the following sections. We
introduce the notion of an [-adic representation in chapter 2 and proceed to
lay out a method to construct a certain family of Abelian [-adic representa-
tions. This construction is carried out first by defining the group S, over Q
using algebraic tori and tools from class field theory. These groups S, are
groups of multiplicative type and with the help of results described in the
first chapter, we see that linear representations of Sy lead to the required
system of Abelian [-adic representations. In chapter 3, we investigate the
condition that an Abelian [-adic representation should satisfy in order for
it to arise via the groups Sy, as described above. The required condition is
local algebraicity and is the subject matter of this chapter. We end with a
short discussion of [-adic representations of elliptic curves and understand
how these representations differ greatly in the two cases when the elliptic
curve has complex multiplication (CM) and when it does not. In the CM
case, the representation is always Abelian (in particular, it is not surjective)
and can be obtained from one of the groups Sy, whereas in the non-CM case,
it is almost always surjective.



1 Algebraic Groups

In this chapter, we will introduce the basic definitions of Algebraic Groups
and other related topics that will turn out to be useful in subsequent chap-
ters. We will follow the approach laid out by Milne in [6] in making these
definitions. In particular, as we will be working with affine schemes over
a field with characteristic zero, it is convenient to ignore non-closed points.
Consequently, we will be concerned with maximal spectrums (Spm) rather
than the spectrum of prime ideals of a ring (for a dictionary between Spm
and Spec, refer to ( [6], appendix A)). Throughout our discussions, if k is a
field, then k& denotes the algebraic closure of k. Again, since only fields with
characteristic zero are considered, the separable closure of k, denoted k°°P,
coincides with k.

1.1 Definitions and Examples

Definition 1 (Algebraic Group). An algebraic group G over a field k is an
algebraic scheme over k along with

1. an element e in G, called the identity,

2. a morphism of algebraic schemes m : G x G — G over k, called the
multiplication map, and

3. a morphism of algebraic schemes i : G — G over k, called the inverse
map,

which endow a group structure to G.

If G is an affine scheme i.e., it is isomorphic to Spm(A) for a finitely-
generated k-algebra A, then G is said to be an affine algebraic group. For
such a group G, we say A is the coordinate ring of G, denoted by k[G]. Since
we shall be exclusively dealing with affine algebraic groups in this essay, the
following discussion shows how the structure of such an affine group G can
be re-interpreted in terms of its coordinate ring A[f]

1For more details, refer to (Borel [1], chap. 1, §5), or (Milne [6], chap. 3)



1. Corresponding to the identity element e of GG, we have the evaluation
at e homomorphism:

e: A—k
e(f) = f(e).

2. Note that Spm(A ® A) = Spm(A)xSpm(A), and thus the morphism
m gives rise to the k-algebra homomorphism A : A - A® A. The
map A is such that if A(f) = > ¢; ® h;, then f(zy) = > gi(x)hi(y),
for x,y € G and f,g;, h; € A.

3. Corresponding to the inverse morphism ¢, there is the k~-homomorphism

ig : A — A, such that for all x in G and f in A, io(f)(z) = f(z™).

In order to translate the group axioms of GG, we also introduce a homomor-
phism pg : A — A corresponding to the trivial morphism p : G — G, where
p(z) = e for all z in G. Thus, po(f)(xz) = f(e) for all fin A. In other words,
po is simply the composite of € with the inclusion of k into A. The group
axioms defining G can now be translated in terms of the following diagrams
being commutative?}

A" L A®A A—2 s ApA A—2 s A0 A

lﬂo luo@ld lA\ l(povld) lAK l(io,ld)
(1

AQA M A9 A0A A A A® A
)

Note that these three diagrams are obtained from the corresponding dia-
grams describing the associativity, the identity element and the existence of
the inverse in G respectively.

Conversely, if A is a finitely generated k-algebra and the homomorphisms
(A, €,10) as before are such that the diagrams given above commute, then the
affine scheme G = Spm(A) is an affine algebraic group with the multiplication
map, the inverse map and the identity element obtained from this data.
The k-algebra A forms what is called a Hopf algebra with A called the
comultiplication map, € the co-identity map and ¢y called the antipode.

2Here the following notation is used: if f,g : A — A are two k-algebra homomorphisms,
then (f,g) denotes the homomorphism from A ® A — A defined by a ® b — f(a)g(b)



Ezample 1.1 (Additive Group). If k£[X] is the polynomial ring in the vari-
able X, then the k-variety G, = Spm k[X] is an algebraic group called the
Additive Group. Here, A(X) = X®1+1®X and io(X) = —X and ¢(X) = 0.

Ezample 1.2 (General Linear Group). The affine variety
GLn = Spm k[XH, X127 ce ,Xnn, det(Xij)_l]

is another affine algebraic group called the general linear group. In this
case, we have €(X;;) = i, A(Xij) = D jcpen Xik @ Xij, and ig(X;;) =
(—1)"(det(X,;) ') M;;, where M,; denotes the determinant of the matrix
obtained from (Xj;) by removing the j™ row and i*" column. Similary the
affine variety SL,, is also an affine group.

Ezample 1.3 (Multiplicative Group). The affine group GL;, often denoted
Gy, is of fundamental importance in our discussion of algebraic tori and is
called the Multiplicative Group. It is the max-spectrum of the ring k[ X, X 7).

Ezample 1.4 (Roots of Unity). For an integer n > 1, we have the following
affine group p, = Spm(k[T]/(T™ — 1)), which has its comultiplication map
induced from that of G,,.

Definition 2 (Homomorphisms). A Homomorphism of k-algebraic groups
is a morphism of schemes over k that is also a homomorphism of groups.
Again, only affine groups are considered in this discussion and describing a
homomorphism « : G — H between affine groups is equivalent to giving
a homomorphism of k-algebras o : k[H] — k[G] such that the following
diagram commutes:

k[H] s k[G]

lAH lAG (2)

K[H] @ k[H] <25 k[G] @4 k[G].

Let G = Spm(A) be an affine algebraic group over k with coordinate ring
A. For a k-algebra R, we denote G(R) to be the set of points in G with
coordinates in R i.e.,

def

G(R) = Homk_alg(A, R)

6



1.2 Welil Restriction of Scalars

We discuss the Weil Restriction of Scalars for affine varieties. For a more
general construction, see for instance (A. Weil |11], §1.3). Let & be a number
field and K, a finite extension of k of degree d. Let V be an affine variety
over K with V' = Spm Kt1,...,t,)/(f1,.-., fm). Choose a basis {e1,...,eq}
of K over k. For 1 <1i <n and 1 < j < d introduce new variables y;; and
write x; = Y61 + - - - + yigeq. Substituting these expressions into each of the
polynomials f,., we obtain, for 1 <r < m,

fr(xla cee 7xn) = Pri€1 + - +pr,ded7

where p, ; are polynomials in the variables y;; with coefficients in k. Then,
the Weil restriction of V' from K to k is defined as the k-variety Resg (V) =
There is a natural morphism p : Resg (V) — V defined over K and the pair
(Resg/x(V), p) satisfy the following universal property:

Let X be a variety defined over k£ and let f : X — V be a
morphism defined over K. Then there is a unique ¢ : X —
Resg/x (V') defined over k, such that f = po ¢.

1.3 The Character Group

Definition 3 (Character of an Algebraic Group). A character of an algebraic
k-group G is a homomorphism y : G — G,, of algebraic groups over k.

Note that the set of all characters of G, denoted X (G), forms an abelian
group under point-wise multiplication: (x1 + x2)(9) = x1(9)x2(g). We say
X(G) is the Group of Rational Characters of G.

Let G be an affine algebraic group over k and k[G] = A. Recall that
giving a homomorphism of affine algebraic groups is equivalent to giving
a homomorphism between their coordinate rings. Since k[G,,] = k[t,t7!]
and Ag,, (t) = t ® t, this means that a character x of G corresponds to
a homomorphism x* : k[t,t7'] — A that makes diagram commutative.
Such a homomorphism is determined by the image of the indeterminate t,
which must be mapped to a unit in A. Thus, every such homomorphism
corresponds to a unit o, = x*(¢) in A that satisfies Ag(ay) = oy ® a,.
Such elements o in A = k[G] that are invertible and satisfy Ag(a) = a ® «
are called group-like elements of k[G]. In conclusion, there is a one-to-one

7



correspondence between the characters of G and the group-like elements in
k[G].

Ezxample 1.5. When G = G,,, then any homomorphism y : G,, — G,, must
be of the form ¢ — t" for an integer n, and hence X (G,,) = Z.

1.4 Algebraic Tori

We will now study a fundamental class of algebraic groups known as algebraic
tori, that find great importance in number theory.

Definition 4 (Split Torus). An algebraic group G over k is said to be a split
k-torus if it is isomorphic to a finite product of copies of G,, over k.

Definition 5 (Torus). An algebraic group G over k is a torus if Gyser, ob-
tained by extending scalars from k to its separable closure k*P, is a split
k*P-torus. For such a torus G, with Ggser = H?Zl G, we say d is the
dimension of G.

It is well known that a torus T actually splits not just over k*”, but over
a unique minimal finite extension L of k called the splitting field of T, i.e.,
Ty, is a split L-torus.

Remark. Let k' be a finite separable field extension of k& and let G be a k'-
group. Now let K be a field containing the Galois closure of k' and let X
denote the set of k-embeddings from &' to K. Clearly, |X| = [k : k]. We first
restrict G by scalars to k and then extend by K to obtain

(Resw /1G) i = H Ga, (3)
Q€Y

where G, is the affine K-group obtained from G by extension of scalars
from £ to K and K is considered to be a k’-algebra with respect to the
homomorphism «a.

Example 1.6. We present an example that will be studied in greater detail in
the coming sections. Let K be a number field and let 7' = Resk/g(Gy) be
the algebraic group over Q obtained by restriction of scalars. Now Q*? = Q.

Then by (3)),
Tyo =T [] Guna= [[ Guwa (4)

a:K—Q wK—Q

where G, /g 1s just the multiplicative group over Q. Thus T is a Q-torus.

8



1.4.1 The Character Group of a Torus

Recall that the group of rational characters on the k-group G is the set
X(G) = Mor(G, Gy),

which turned out to be an Abelian group. Following along the lines of exam-
ple if T'is the split k-torus Hle G/ of dimension d, then any character
of T is of the form (t1,...,t4) — t7* -+t and hence X (G) = Z¢. Thusif T
is a k-torus of dimension d, then X (Tjser) = Z%. Thus a d-dimensional torus
gives rise to a finitely generated free abelian group of rank d. This character
group will be studied in greater detail in later sections.

1.5 A Specific Example Relating to Number Theory

We shall now resume our discussion from Example 2.1. Recall that T =
Resk/q(Gyn) turned out to be a Q-torus of dimension d for a number field K
with degree d over Q. Thus X (Tg) = Z?. Let us examine this group in a little
more detail. Let ¥ = Hom(K, Q) denote the set of d distinct embeddings of
K into Q, and let ¢ € ¥. Then o can be extended to a homomorphism of
K ®g Q to Q, by taking z ® y to o(z) -y, for v in K and y in Q. This gives
a morphism of Q-groups
GI{E@—%(GﬁW@,
and hence a character of 7. In fact, the collection of all o’s forms a basis
for the character group X(Tg). In addition, X (7f) also admits an action by
the Galois group Gal(Q/Q) via permutation of the &’s. Any character y in
X (Tg) would thus look like
[I@r,

oceEX
where n, are integers.

Let E be a subgroup of the group of Q-rational points on 7. Then the
Zariski closure of E in T, say E, is an algebraic subgroup of T'. Consider the
quotient group T'/E, which we denote by Tx. Tf is a Q-torus. Let X denote
its character group X (7Tg). Then X is the subgroup of X (T') consisting of
those characters that are trivial on FE, i.e.

Xp = {H(a)”a eX(T): [[o(@) =1 forallx € E} .

ceEY oEX

9



We will make use of the above observations to work out the dimension of the
torus Tk in the following example.

Ezxample 1.7. Let K be a quadratic extension of Q and let £ be the group
of units in the ring of integers of K, a subgroup of T'(Q) = K*. The group
E is finite if K is imaginary and has rank 1 if it is a real extension. When E
is finite, then it is already Zariski-closed, and hence E is finite. T is then
a quotient of a torus by a finite group and hence is still a torus of the same
dimension.

Consider the case when K is real. Recall that the rank of the character
group of a torus is the same as the dimension of the torus. Let us try com-
puting the former. The group Xp consists of all characters x =[], .5 (7)™
such that [] .5, o(z)" =1 for all x in E. Since E is the group of units, the
norm Ng/g(z) = [[,ex0(z) = 1. K is a real quadratic extension and hence
> has two elements the identity and the non-trivial embedding, say . Thus,
for all z in E, x - o(x) = 1. We now determine all the possibilities of the
integers n,,, which would give us the rank of Xg. For ease of notation, denote
these integers as n; and ny corresponding to the identity and the embedding
o respectively. Now 2" - o(z)" must be equal to 1, but z - o(z) = 1. This
implies that we actually just need o(z)"2~™ = 1. If ny # ny this is equivalent
to saying that o(z) must be a root of unity for all z in E. But K is real and
hence F is infinite and cannot consist only of roots of unity. Thus n; must
equal ny. This means that the rank of Xz, and hence the dimension of T},
must be 1.

1.6 Characters Revisited

In the following sections, we shall go through some more properties of the
character group and present some elementary facts about representations of
affine algebraic groups. We will restrict our attention to algebraic groups
defined over number fields in this discussion.

Let H be an affine commutative algebraic group over a number field K.
Recall that X (Hz) denotes the group of characters of the algebraic group
Hz over the algebraic closure K i.e.

X(H?) = MOIK(HK, Gm)

Then the Galois group G = Gal(K/K) acts on X (Hz) as follows:

10



For o € GG, o acts on Hy via its action on the coordinates and
let o denote the automorphism of Hz defined by this action.
Then the action of G on X (Hp) is defined by

o-X=0¢,ox° (0mg)
for any x € X(Hy).

Note that o - x = x if and only if x is defined over K. Now, if K[X(H%)]
denotes the group algebra of X (Hy) over K, we can define a G-action on it

B o+ (Do) =D olao ),

for any Y a,x € K[X(Hg)].

If H = Spm(A), where A is the coordinate ring of H, then the coordinate
ring of H is A = A® K. Recall from our previous discussion on characters of
affine algebraic groups (§L.3)) that each x : H — G, in X (Hp) corresponds
to a group-like element a, in A. This gives a map o : X (Hg) — A defined
by a(x) = «,, which can be extended by linearity to obtain a homomorphism
from the group algebra K[X (Hz)] to A:

a: K[X(Hg)] — A.

This is actually a G-homomorphism for the action of G on K[X (Hz)] defined
above.

Proposition 1. The homomorphism « is injective.

Proof. Let 3" a,x € K[X(Hg)] lie in the kernel of a. It follows that

oz(z ayx) =0
= Z aya(x) = 0.
The following lemma is needed to complete the proof.

Lemma 2. Let A be a Hopf Algebra over a field k. Then the set of group-like
elements in A are linearly independent.

Proof. (of Lemma)
We begin with the following observation. If f is a group-like element of A

11



i.e., a unit in A that satisfies A(f) = f ® f, then from the commutativity
of diagram (1)), f = ((¢,Ida) o A)(f). But since f is group-like, ((¢,Idy) o
A)(f) = (6,1da)(f ® f) = fe(f). Thus e(f) = 1 for all group-like elements
fin A.

Assume that the set of group-like elements is not linearly independent.
Let n > 1 be the greatest integer such that there exists a set {f1,..., fu} of
group-like elements in A that are linearly independent. Then, by assumption,
there exists f in A which is group-like, f # f; for any ¢ and satisfies the
following relation

f=> aifi, ai€k
i=1
As f #0, a; # 0 for some 1 <t < n. The following equations hold:

Afy=Ffof= Y aalfi®f),

1<i,j<n
A(f) = Z%‘A(fi> = Zai(fi ® fi)-
i=1 i=1

Since the elements {f; ® f;}1<;i j<n are also linearly independent, comparing
the above equations implies that a;a; = 0 for all i # j, and a? = a; for all
i. Recall that a; # 0, which means a; = 0 for all ¢ # ¢, and that a? = ay,
implying a; = 1. But this means f = f;, a contradiction to our choice of f.
Thus, all group-like elements in A are linearly independent. E’] O

Coming back to the proof of the proposition, since a(y) is group-like for
each x, Y aya(x) = 0 would mean each a, = 0 using the above lemma.
Thus ) a,x = 0, implying that « is injective. O

Thus, the proposition tells us that we may view K[X(H%)] as a sub-
algebra of A= A® K.
1.7 Linear Representations of Algebraic Groups

Let G be an affine algebraic group over a field k, and A be its coordinate
ring. Let V' be a finite-dimensional vector space over k, and let n = dimy (V).

3Using the correspondence of characters of H and the group-like elements of A, a
corollary to this lemma would be that the characters are linearly independent as functions
from H — A'. This is a well-known result due to Artin.

12



Then by GLy, we mean the affine k-algebraic group GL, for a fixed basis of
V over k.

Definition 6 (Linear Representation). A homomorphism of k-algebraic groups
¢ : G — GLy is said to be a linear representation of G into V', denoted by

(@, V).

If W is a subspace of V' that is stable under G, i.e., p(g)(W) C W for
all g € G, then the homomorphism p" : G — GLyy, obtained by restricting
p(g) to W, is called a subrepresentation of G. For simplicity, we say V is a
representation of G and W is a subrepresentation of V.

Definition 7 (Simple and semi-simple Representations). A non-zero repre-
sentation V of G is said to be simple if the only subrepresentations of V' are
{0} and itself. It is called semi-simple if it can be expressed as the direct
sum of simple representations.

Ezample 1.8. For a group G, any character x € X(G) is a one-dimensional
representation of G, and since such representations cannot contain any non-
trivial subrepresentations, they are also simple. We will later see that for
a certain class of algebraic groups called diagonalizable groups, the set of
characters are the only simple representations.

1.8 Diagonalizable Groups

Let M be a finitely generated Abelian abstract group and let k[M] be the
group algebra of M over k. Since M is finitely generated as an Abelian
group, k[M] is also finitely generated as an algebra over k, using the same
generators. We can define a Hopf algebra structure on k[M] by defining the
co-multiplication, co-identity and antipode maps as follows:

Am)=m®m, €em)=1, iy(m)=m"",

for allm € M. Hence, denote by D(M), the affine algebraic group Spm(k[M]).
Ezxample 1.9. 1. If M =7, then D(M) = G,y,.

2. If M =7Z/nZ for n > 1, then D(M) = p,,.

13



Note that for two such Abelian groups M; and M,, there is a natural
k-algebra isomorphism k[M; x Ms] ~ Ek[M;] ® k[M,] which preserves the
respective Hopf algebra structures. It follows that if

MZZx- - XLX(L/MZ) %X - X (L/mZ),
for a fixed basis of M as a Z-module, then
DM) =Gy X o+ X Gy X g X v+ X fp, -

In addition, if f € k[M] is a group-like element, then f = > a;m; for some
a; € k and m; € M. Following the proof of lemma , this means f = m; for
some ¢, which implies that the group-like elements of k[M] are precisely the
elements in M. It follows that the character group X (D(M)) is isomorphic
to M. We will now define what it means for a group to be diagonalizable
and see how they are related to the groups D(M).

Definition 8 (Diagonalizable Groups). An algebraic group G over k is said
to be diagonalizable if the group-like elements in A = k[G] span it as a
k-vector space.

From the previous discussion, it follows that all algebraic groups D(M)
are diagonalizable. Now, given a diagonalizable group G, let M be the group
like elements in k[G]. From lemma (2)), M is a linearly independent set.
These two facts together imply that k[M] is isomorphic to k[G] and since the
co-multiplication, co-identity and antipode maps are defined on each m € M
and extended k-linearly on k[M] and k[G] respectively, this isomorphism re-
spects the Hopf algebra structures. Thus D(M) = G, giving us the following
theorem:

Theorem 3. An algebraic group is diagonalizable if and only if it is isomor-
phic to D(M) for some finitely generated Abelian (abstract) group M.

The theorem below is also true, the proof for which has been omitted and
can be found in ( [6], chap. 12, theorem 12.9):

Theorem 4. The functor from the category of finitely generated Abelian
groups to the category of diagonalizable algebraic groups, sending M to D(M),
15 a contravariant equivalence. The quasi-inverse is given by the functor send-
ing the diagonalizable group G to its character group X(G). Moreover, both
these functors are exact.

14



Now, for n > 1, let D,, denote the affine k-group

Spm(k[Ty, ..., To, Ty, T, 1) 2 D(Z7) = Gy X -+ X Gy

n

-_
n times

It is the group of invertible diagonal n x n matrices, and hence a subgroup
of GL,,. Note that any torus 7" becomes isomorphic to ID,, over the separable
closure of k.

Definition 9. A finite-dimensional representation ¢ : G — GL,, of G is said
to be diagonalizable if the image ¢(G) C D, or equivalently, the representa-
tion is a direct sum of one-dimensional subrepresentations.

It is known ( [6], chap. 12, theorem 12.12) that an algebraic group G
is diagonalizable if and only if every representation of GG is diagonalizable.
Moreover, the one-dimensional representations of GG are precisely the charac-
ters of G. Thus, every representation of a diagonalizable group is semi-simple,
with the characters forming the simple objects.

1.9 Groups of Multiplicative Type

Definition 10. An algebraic group H over k is said to be a group of
multiplicative type if it becomes diagonalizable over some extension of k.

An immediate example would be any torus over k, as it becomes diago-
nalizable over k*°P.

It can be shown that any group of multiplicative type, in fact, becomes
diagonalizable over a finite separable extension of k, which makes such groups
susceptible to Galois theory. This is particularly useful in drawing an equiva-
lence between these groups and a certain class of finitely generated Z-modules
as we shall see below.

Let T' = Gal(k*P /k), equipped with the Krull topology, M be a finitely
generated Abelian group, and suppose I' acts on M. Recall from ( [2], chap.
V, §2.3) that M is said to be a discrete I'-module if this action is continuous
for the discrete topology on M. Equivalently, M is a discrete I'-module if
the stabilizer in I of every element of M is an open subgroup of T

Let H be an algebraic group over k and let X*(H) be the character
group of Hyser. We have seen in that the Galois group I" acts on X*(H).
Also recall that X*(H)', the subgroup fixed by T', is precisely X (G). Every
character x : Hyseo — Gy, gser defined over k5P is in fact defined over a finite

15



separable extension E of k, and is thus stabilized by the open subgroup
Gal(k*P/E). We conclude that I" acts continuously on X*(H), giving us a
contravariant functor X*, from algebraic groups over k to finitely generated
Abelian groups equipped with a continuous action of I'.

On the other hand, let M be a finitely generated Abelian group equipped
with a continuous action of I'. Let D(M;) denote the diagonalizable group
over k°P obtained from the construction in the previous section. Then the
coordinate ring of D (M) is k*P[M|] and the character group X (D(M,)) = M.
Now let D’(M) denote the algebraic group defined over k that has coordinate
ring (k*P[M])' = k[MT]. Using the isomorphisnf]

kP @ k[M"] = k5P M],

it follows that on extending scalars from k to k*P we get D/(M)gser =
D(My), since their coordinate rings are isomorphic. This implies that D’(M)
is a group of multiplicative type and the character group X*(D'(M)) =
X(D'(M)gser) = M. The functor M ~» D'(M) is thus a contravariant func-
tor from finitely generated Abelian groups with a continuous action of I', to
groups of multiplicative type over k.

Theorem 5. The functor X* is an equivalence between the category of groups
of multiplicative type over k and the category of finitely generated Abelian
groups with a continuous action of I', with quasi-inverse given by the functor
D'. Both these functors are exact.

Remark. Tori are those groups of multiplicative type for which X*(7") is
torsion-free.

Representations of Groups of Multiplicative Type

Let H be a k-algebraic group with coordinate ring k[H| = A, and let
Rep, (H) denote the set of isomorphism classes of linear representations of
H over k. If H is diagonalizable, then every representation of H is semi-
simple, i.e. Repg(H) is a semi-simple category with the characters in X (H)
being the simple objects. When H is a group of multiplicative type, the
following proposition will show that in this case too, Repx(H) is a semi-
simple category, however the simple objects are classified by the orbits of
[' = Gal(k*? /k) acting on X*(H).

4Refer to proposition 16.15, chapter 16, in Milne’s course notes on Algebraic Geometry
https://www.jmilne.org/math/CourseNotes/AG16.pdf|
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Let ¢ : H — GLy be a linear representation of H into a finite-dimensional
k-vector space V. Since H is of multplicative type, when considered over k5P,
it becomes diagonalizable, and hence ¢ decomposes into sums of characters
from X*(H) over k*P. Let n,(¢) denote the multiplicity of x € X*(H) in
the decomposition of ¢ over k5P,

Definition 11 (Trace). The trace of ¢ is the element 0, = > n,(¢)x in
ZIX*(H)).

Note that if R is an Abelian k-algebra, and h € H(R), then 6,(h) is
the trace of the matrix ¢(h) € GLy(R). Also, from proposition in §1.6]
k*P[X*(H)] can be embedded into A ® k*P, and in particular, 65 € A® k5P.

Proposition 6. The map ¢ — 8, is a bijection between Rep,(H) and the
set of elements 6 = 3 n,x € Z[X*(H)] where ny, > 0 and ny = n,., for all
cel and x € X*(H).

Proof. We prove surjectivity first. Let x be a character in X*(H) and let T,
be the stabilizer of x. Since X*(H) is a discrete Imodule, I', is an open
subgroup, and hence has finite index (as I' is compact). Thus, x has finitely
many conjugates under the action of I', one corresponding to each element in
the orbit O, of x. Moreover, there is a bijection between O, and I'/T'. Let
{xi=x.x2,---.xs} ={o-x: @ el'/T} be the set of distinct conjugates

of x, and let
0=> xi (5)
i=1

If k£, denotes the fixed field of T'y, then it is a finite extension of £ with
degree equal to the index [I' : I';]. In addition, it is the smallest subfield
of k*®, such that x is defined over k,, or equivalently, the smallest subfield
such that y € A ® k:xﬂ Thus, x : Hy, — Gy, is a character and a one-
dimensional representation of Hy . By restriction of scalars to k, we obtain
a representation, say ¢, of H with degree [k, : k|. Note that the trace 6, of
¢, would then be equal to 0, showing that 6 has a pre-image under the given
map. Now, any 6 satisfying the conditions of the proposition is a sum of
elements of the form [5], and hence has a pre-image, giving us the surjectivity
of the map.
Injectivity of the map follows from the following lemma:

SHere we are using the fact that X*(H) embeds into the coordinate ring AP = A®ksP
of Hyser as a result of proposition .

17



Lemma 7 (Bourbaki, Corollary 3.8, Chapter XVII, [4]). Let k be a field
of characteristic 0, R be a k-algebra, and E,F be semi-simple R-modules,
with finite dimensions over k. For each o € R, let ag and ap, denote
the corresponding k-endomorphisms on E and F respectively. If the traces
Tr(ag) and Tr(ar) are equal for all & € R, then E and F are isomorphic as
R-modules.

If (¢1,V1) and (¢, V) are elements in Rep(k), such that their traces are
equal, O, = 6,,, then the above lemma with R = k[H|, E =V} and F =V,
implies that V] = V5, and hence the required injectivity follows. O

Note that if F is an extension of k and ¢ € Rep,(H), then by extension
of scalars from k to E we obtain a representation in Repyi(Hg). This gives
an embedding of Rep,(H) into Repy(Hg).

Definition 12. Linear representations of an algebraic group over F are said
to be defined over £ if they fall under the image of the embedding Rep, (H) —
Repy(Hp).

With this embedding in mind, the following corollary is immediate from
the above proposition:

Corollary 8. Suppose 1) € Repg(Hg). Then ¢ can be defined over k if and
only if Oy, which is naturally an element of A ®y E, in fact belongs to A.
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2 Construction of Abelian [-adic Representa-
tions

Let K be a number field and G = Gal(Q/K) denote the absolute Galois
group of K. For a prime [, let V' be a finite-dimensional vector space over Q;
with dimension n. We endow End(V) ~ M,,(Q;) with the topology induced
from @Q;. Then Aut(V') = GL,(Q;) and it is an [-adic Lie group with topology
induced from that of End (V).

Definition 13 (l-adic Representation). Consider the Krull topology on the
group GG. A continuous homomorphism p : G — Aut(V) is called an [-adic
representation of G (or of K).

Ezample 2.1 (Roots of Unity). Let = denote the group of (I™)™ roots of
unity in Q. Then, G acts continuously on the finite groups gy for all m.
Moreover, the sets p;» form an inverse system under the exponentiation by [
map, and the action of G commutes with these exponentiation maps. Thus,
if we let T;(p) denote the inverse limit I&n pm then G acts continuously on

Ty(p). Since pym = Z/I™7Z, Ti(p) is a free Z;-module of rank 1. Let Vj(u)
denote the one-dimensional Q;-vector space T;(u) ® Q; with G-action induced
by the action on 7j(x). Then

X G— Aut(V) = Q)

is a one-dimensional [-adic representation of G.

Ezample 2.2 (Elliptic Curves). Let E denote an elliptic curve defined over
K and let Ejm denote the kernel of the multiplication by {"™ map in E(Q).
It is known that Ejm = (Z/I™Z)?. The sets Em form an inverse system

and T)(F) = Hm Epm = Z? is called the Tate module of the elliptic curve

E. Once againr,nG acts continuously on each group E;» and also commutes
with the multiplication by [ map that forms the inverse limit. Thus, G has
a continuous action on the Tate module T}(E) of E, and for a fixed basis of
T)(E) as a Z;-module, we get a continuous homomorphism:

pr: G — Aut(T)(E)) = GLy(Zy).

If Vi(F) is the two-dimensional Q;-vector space T;(E) ® Q; along with the
action of GG, then by the natural inclusion of Z; C Q;, we obtain a continuous
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homomorphism:

pr: G — Aut(Vi(E)) = GLo(Q)).

The homomorphism p; is called the [-adic representation of G associated to
E.

2.1 [-adic Representations of Number Fields

Let K be a number field and Mg denote the set of all finite (non-Archimedean)
places of K. If v is such a place, then we denote by k, the residue field at
v, f, the residue degree, e, the ramification index and p, the rational prime
below v (or the characteristic of k,). Then, k, is an extension of the finite
field I, with degree [k, : F,,] = f,. The completion of K with respect to
the valuation v will be denoted by K,.

Now, suppose L is a finite Galois extension of K, with Galois group G.
If w € My, then the decomposition group of w is the subgroup of GG defined
by D, = {0 € G: o(w) = w}. If w lies above v € My, then D, is the
Galois group of L,, over K,,. There is a homomorphism of D,, onto the Galois
group Gal(l,/k,) of the residue fields, and the kernel of this map is called the
inertia group I, of w. This leads to an isomorphism D,, /I, = Gal(l,,/kK,).
In addition, since l,/k, is an extension of finite fields, its Galois group is
cyclic and is generated by the Frobenius map. The corresponding generator
in D, /1, under the above isomorphism will be denoted by F,, and will be
called the Frobenius element.

We say w is unramified if I, is trivial. Note that for all w € M that
divide v € M, the inertia groups I,, (resp. the decomposition groups D,,)
are conjugate to each other. Accordingly, we may also say that v is unramified
if for any (and hence all) w | v, I, is trivial. Moreover, if v is indeed
unramified, all the Frobenius elements F,, € D, will be conjugate to each
other for all w | v. Thus, the conjugacy class of F,, in G depends only on v
and will be denoted by F;,.

We now extend the above definitions to arbitrary extensions K over Q.
In this case, M is defined to be the projective limit of the sets Mg, , where
E, varies over the finite extensions of Q contained in K. Likewise, if L/K is
an arbitrary Galois extension, and w € M is such that it divides v € Mk,
we define D,,, I,,, F,, and, if v is unramified, F;, the same way as above .

With these notations in mind, we have the following definition of unram-
ified representations.
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Definition 14 (Unramified Representation). If p : Gal(K/K) — Aut(V) is
an [-adic representation of K and v € Mk, then p is said to be unramified
at v if p(1,) is trivial for any w € M3 dividing v.

If p is unramified at v, then for all w dividing v, we obtain a homomor-
phism p : D, /I, — Aut(V). Recall the Frobenius element F, lies in D,,/I,,
so the element F,, , := p(F,) will be called the Frobenius of w in the rep-
resentation p. Again, since D,,’s (respectively I,,’s) are conjugate for all w
dividing v, we see that the conjugacy class of F, , in Aut(V') depends only
on v, and will be denoted by F, ,.

Definition 15 (Rational [-adic Representations). Let p be an l-adic rep-
resentation unramified at v € Mg and let P, ,(X) denote the polynomial
det(l1 — X - F, ,) in the variable X with coefficients in @;. ﬂ Then p is said
to be rational (resp. integral) if there is a finite subset S of My such that
p is unramified outside S, and for all v ¢ S, the coefficients of P, ,(X) are
rational (resp. integral).

One may verify that the [-adic representations described in examples
and are both rational (in fact integral) representations.

Rather than studying a single [-adic representation p; for a given prime
[, it is often more fruitful to consider a system of [-adic representations for
multiple primes [, that are compatible with each other in a certain sense. We
introduce this notion of compatibility in the following definitions and shall
construct such a system of compatible representations in §2.4]

Definition 16 (Compatible Representations). Let [, !’ be two distinct primes
and p, p’ be rational [-adic and [’-adic representations respectively. We say p
and p’ are compatible if there exists a finite subset S of Mg such that they
are unramified outside of S and the respective characteristic polynomials
of the Frobenius elements are the same for all v not in S (or equivalently
P,,(X)=P, (X) foral v ¢S9).

v,p

Definition 17 (Compatible System). A Compatible System is a collection
{pi}:1 of rational [-adic representations for every prime [/, such that for any two
primes [ and [’, p; and pp are compatible. The system is strictly compatible

CHere, by F, ,, we mean any representative of the conjugacy class in Aut(V). P, ,(X)
can also be obtained by reversing the order of the coefficients of the characteristic poly-
nomial of this representative
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if there exists a finite set S C Mg such that for all valuations v outside S
not dividing [, p; is unramified at v, the coefficients of P, , (X) are rational,
and, if v does not divide I, then P, , (X) =P, ,,(X).

v,y

Pl

Now, we define the class of [-adic representations with values in an affine
algebraic group.

Definition 18. Let H be an affine algebraic group over Q, and K a number
field. Let [ be a prime and consider H(Q;) endowed with the natural topology
induced from that of @;. A continuous homomorphism p : Gal(K/K) —
H(Q) is called an [-adic representation of K with values in H.

Suppose A is the coordinate ring of such a group H over Q. An element
¢ in A is said to be central if ¢(xy) = ¢(yx) for any x,y in H(R) and any
commutative (Q-algebra R. For such an x, the conjugacy class of x in H is
rational if ¢(z) lies in Q for every central element ¢.

We say p is rational if it is unramified outside a finite set of places of
K, and if, for these places v where p is unramified, the conjugacy class F;, ,
is rational over Q in the sense defined above. Note that if H is Abelian,
then this just means F),, should lie in H(Q). If I and !’ are two primes
and p, p' are two rational [-adic and [’-adic representations respectively, then
they are said to be compatible if there exists a finite set of places S outside
of which these representations are unramified and for any central element ¢
in A, ¢(F,,) = ¢(F,,) for all finite places v outside S. The definition of
compatible systems follows similarly.

2.2 Chebotarev’s Density Theorem

Here, we shall study an important result due to Chebotarev and a few im-
mediate corollaries that shall prove to be useful in later sections.

Definition 19 (Density). Let P C My, and for each integer n > 1, we set
a,(P) to be the number of valuations v € P such that p/v < n. If the limit

exists, then we say P has density a.

Note that p/* is the number of elements in the residue field ,. Also, a
finite set always has zero density.
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Theorem 9 (Chebotarev’s Density Theorem). Let L be a finite Galois ex-
tension of the number field K with Galois group G. Suppose X is a subset
of G which is stable under conjugation by elements in G, and Px is the set

of places in My that are unramified in L and the Frobenius class F, lies in
X for allv € Px. Then Px has density IX1/|a|.

Refer to [theorem 10, chap VIII, [5]] for a proof.

Corollary 10. For each o € G, there exist infinitely many unramified places
w € My, wn L such that their Frobenius element F,, s equal to o.

Proof. Taking X to be the conjugacy class of ¢ in G and applying the above
theorem, we see that the set Py has non-zero density and in particular, has
infinite cardinality. This means each v in Px is unramified in L and for every
wlwvin L, F, € X. Thus every such F, is conjugate to o, and by applying
the reverse conjugation, we can find a w’ such that F,, is exactly o. Since
there are infinitely many such v’s, the result follows. O]

Now suppose L is an arbitrary (possibly infinite) Galois extension of K
unramified outside a finite set of places S C M. Let G be the Galois
group of L over K, equipped with the Krull topology. Consider the following
proposition:

Proposition 11. The set of Frobenius elements of the unramified places in
L is dense in G.

Proof. Let 0 € G and let U be an open neighborhood of ¢ in GG. By definition
of the Krull topology, the set of subgroups Gal(L/FE), with E a finite Galois
subextension of K in L, form a basis of open neighborhoods of the identity.
Thus, U must contain a coset of Gal(L/FE) in G for some such E. This coset
can be uniquely identified with an element of Gal(E/K). Assume 7 € G
is a representative of this coset and let 7 be the corresponding element in
Gal(E/K). By the above corollary, there is an unramified place v’ € Mg in
E such that F,,, =7 (in fact there are infinitely many such w’). Note that for
any place wy in L that is unramified over K and restricts to a place w} in F,
the Frobenius element F,, in G maps to F,x in Gal(E/K). This implies that
we can find a w in L such that its restriction to Gal(E/K) is w’, and hence
F, = 7. We have thus shown that for each element ¢ in G and any open
neighborhood U of o, there exists an unramified place w in L such that the
Frobenius element F, lies in U. It follows that the set of Frobenius elements
is dense in G. O
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2.3 Adeles and Ideles

Recall that My denotes the set of finite places of the number field K. We let
M3® denote the set of Archimedean or infinite places of K, and My be the
union of the finite and infinite places. Thus, if v € My, then the completion
of K at v, K,, will be either R or C if v is infinite, and is a non-Archimedean
valued field if v is finite. In the latter case, we know K, is locally compact
and we will denote the valuation ring of K, by R, (a compact subring of
K,), the group of units in the valuation ring by U, and the uniformizer by
7,. Now, let S be a finite subset of My containing all the infinite places.
Consider

Ag(S) =] Ko x ][ Bo.

vES vegS

which, under the usual product topology, is locally compact. Under component-
wise addition and multiplication, Ak () is also a topological ring. We denote
by Ak, the union of all the sets Ax(S) and prescribe the topology on Ax by
decreeing that all sets A (S) be open subrings[] Ag, called the adele (adéle)
ring of the number field K, is hence a locally compact topological ring. It
consists of elements of the form (z,) € [[ K, such that |z,|, < 1 for almost
all v. In addition, we may obtain a fundamental system of neighborhoods of
0 in Ak by taking all sets of the form [] X, where each X, is a neighborhood
of 0 in K, and X, = R, for almost all v. Also, the natural embedding of K
into [[ K, actually lands in Ag, i.e. if x € K, then the element (z,) given
by x, = x for all v, lies in Ax. The image of K under this injection is called
the ring of principal adeles.

We now define the idele (idéle) group [ associated to K. Set-theoretically,
it is the group of units in Ag: it consists of elements of the form (x,) € [[ K7,
such that z, lies in U, for almost all finite v. However, under the subspace
topology, it is not a topological group since inversion is not continuous. We
thus give it the coarsest topology for which both inversion and the embed-
ding of Iy — Ak are continuous maps. We define the Idele Class group to
be the quotient C' = I/ K*. As before, the injection of K* into [k gives the

"Note that the sets Ag (S) form a directed system over all finite sets S: if S C S’, then
Ak (S) embeds as an open subgroup of A (S’). We may thus give an equivalent definition
of Ak as the direct limit of these sets along with the direct limit topology
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group of principal ideles, and we will often denote these principal ideles by
K™ itself.

2.4 The Groups Sy

Definition 20 (Modulus). A modulus m of K is a collection of non-negative
integers {m, }yenr,, such that m, = 0 for all but finitely many v in Mk. The
finite subset of Mg consisting of all v for which m,, is non-zero is called the
support of m and will be denoted by Supp(m).

For such a modulus m and a valuation v € My, consider the following
set:

conn. comp of K if ve My
Upm = 1+ 7™R, if v € Supp(m) (6)
U, otherwise.

Note that the connected component of K is either Ry or C*, if v € Mp°.
Then Uy = [, Uym, is an open subgroup of I.
Let

E be the group of units in K,
E. = FENUy,

Iy = 1k /Uy, and
Cn =g /(K*Upy).

Moreover, if x = (x,) is a principal idele and if = lies in Uy, then x must be
a unit in K. Thus E, may be equivalently defined as K* N U, and we obtain
the exact sequence:

1= K'/Ey — Iy » Cp — 1. (7)

Ch is the ray class group associated to m and is known to have finite cardi-
nality. By class field theory, if D denotes the connected component of unity
in the idele class group C, then the quotient C'/D is isomorphic to the Galois
group of the maximal Abelian extension of K and is infact the inverse limit
of the Cy’s.

Now, let T denote the torus EGSK/@(GT”). Then E, is a subgroup of
the Q-rational points T(Q). Let E,, denote the Zariski closure of E, in T
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The quotient group 7'/Ey, which we denote by T}, is also a Q-torus. We
immediately obtain a homomorphism K*/E, — T,(Q). This gives us a
diagram of the form:

K*Ey —— I

|

Tw(Q).

Using the above diagram and the exact sequence , we construct a Q-
algebraic group Sy, such that S, (Q) is the push-out of the above diagram. If
the finite group Cy, = I,/(K*/Ey) has cardinality r, then Sy, is the disjoint
union of r copies of Ty,. Sn is said to be the extension of the constant
algebraic group Cy, by Ty, yielding the following exact sequence of algebraic
groups:

1 > T > S » Ch > 1. (8)

Combining this with the previous exact sequence, we obtain the following
commutative diagram:

~
—_

1 —— K*/E, y I Ca

l b g

1 —— Th(Q) —— Sa(Q) > Ch s 1.

~

Note that, by construction of S, as a pushout, it satisfies the following
universal property:

If H is an algebraic group over Q with morphisms a : T, - H
and b : I, — H(Q) such that the following diagram commutes

K*/Ey —— I

U w

Tw(Q) — H(Q),
then there exists a unique morphism ¢ : S, — H defined over Q,

such that a and b are obtained by composing the corresponding
morphisms of Sy, with ¢.
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Remark. The algebraic group Sy, over Q is a group of multiplicative type by
construction, since after a suitable finite extension of Q, it becomes isomor-
phic to the product of a torus and finite Abelian group.

We denote by € the homomorphism € : [ — I, — S,»(Q) and by 7 the alge-
braic morphism T — T, — Su, both obtained from the above construction.
Considering the (Q;-rational points gives the homomorphism

o T(@l) — Sm(@l) (11)
As K ® Q =[], Kv, we note that T(Q;) = (K ® Q)" = [[,, K. This

is a direct factor of the idele group Ix and we denote the projection of I
onto T'(Q;) by proj,. For = € I, we say that proj,(x) is the [-component of
x. The composition m; o proj; : [x — Su(Q;) is a continuous homomorphism
which we denote by «.

It is easy to see that the following diagram is commutative:

K*;)]IK

Lo

KBy —— Iy

Combining this diagram with @D shows that a; and € agree on K*. If
€ : I — Sn(Q) (12)

denotes the homomorphism defined by ¢/(z) = €(z) - ay(x™1), then ¢ is trivial
on K* and thus factors through the quotient I /K* which is precisely the
idele class group C' of K, giving us a map from C to Sy(Q;). In addition,
since the continuous image of a connected set is connected and Sy, (Q;), being
an [-adic Lie group, is totally disconnected, the image of the set D C C' must
be trivial. As noted previously, the quotient C'/D is isomorphic to the Galois
group G* of the maximal Abelian extension of K, and as a result, we obtain
an [-adic representation of G® with values in Sy:

€GP — S (Q) (13)

Proposition 12. The representation €; is a rational and Abelian l-adic rep-
resentation. It is unramified outside Supp(m) U {v € Mg : v | l}. If ¢ is
unramified at v and f, denotes the idele (1,1,...,7m,,...), with the uniformiz-
ing parameter m, in the v-component, then €(f,) € Sn(Q) is the Frobenius
class F, ¢, associated to €.
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Proof. Before beginning the proof, we shall recall a few facts from Class
Field Theory. Firstly, there is a natural embedding of K into I as follows:
a € K} is identified with the idele (1,1,...,a,...), with a in the v-position.
With this embedding in mind, the group of units U, is mapped onto the
inertia subgroup of v in G® under the class field isomorphism C'/D — G#.
Similarly, the uniformizing parameter 7, in K is mapped onto the Frobenius
class of v in G* (which is a singleton in this case).

Now suppose v ¢ Supp(m) and let a € U,. Then under the aforementioned
embedding of K into Ix, a belongs to the group Uy,. Since the map e is
obtained after modding out by Uy, €(a) = 1. Further, if v {1 (i.e. p, # 1),
then the l-component proj,(a) of a is trivial and hence o;(a™!) = 1. This
shows that ¢(a) = €(a) - ay(a™) = 1 for all a in U, where v ¢ Supp(m) and
v { 1. Since U, is mapped onto the inertia subgroup of v in G*, it can be
concluded that ¢ is trivial on this inertia group and hence unramified at all
such v.

Finally, for such a finite place v, €(f,) = €(f,)au(f, ') which is simply €(f,) as
the [-component of f, is trivial. Now, since S, is Abelian, the Frobenius class
is a singleton and hence the element €( f,) is the required Frobenius element
F,.. Note that ¢(f,) actually lies in Sy (Q), which means the coefficients
of its characteristic polynomial would be rational, and thus, ¢; is a rational
[-adic representation. O

Moreover, it can be seen from their respective definitions that both f, and
the map € are independent of the prime . Thus, the Frobenius element F, ., =
e(f,) stays the same as we vary the prime [, i.e. for any two primes [ and !’
and v ¢ Supp(m)U{v € Mg : v |lorv|l'}, ¢(f,) = e (fy) = €(f,). This
means that the collection {¢}; form a strictly compatible system of rational
Abelian [-adic representations. Since F, ., is independent of the prime [, we
denote it by F,, the Frobenius element associated to the system {¢};. The
following lemmas will establish that the set of all Frobenius elements F, is
Zariski-dense in Sy,.

Lemma 13. The image Im(¢;) = ¢,(G*") of the representation € is Zariski-
dense in Sy,.

Proof. Suppose x belongs to the open subgroup

U = [ [ Usim

vl
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in K7 =][,, K7 = T(Q). Embedding this subgroup into the ideles Ix (with
1’s at all places not dividing [), we see that e(z) = 1 since z € U,, and
ag(z71) = m(2~1). Thus, by definition of ¢ in (12)), (z) = m(z~!) on the
open subgroup U, . Since the map T (Q;) — Sn(Q;) is injective, we have
T(Uim) C Tn(Q;) C Su(Qy), and this image is open. Thus Im(e;) contains
an open subgroup and is therefore open in Sy (Q;). Moreover, m(U;nm) is a
non-empty open set of T1,(Q;) and is thus dense in Ty,. Finally, consider the
following diagram:

I
1 —— K*/Ey, s I > Cn > 1
l l Id
l— Tm(@l) Sm(@l) C1n1 — 1

Ik

Again, ¢ has two parts: one corresponding to ¢ and the other to o;. On
composition with the map Sy (Q;) — Cy, a; corresponds to the route Ix —
Tw(Q) — Sn(Q) — Cy and is thus trivial by exactness of the bottom
row in the above diagram. On the other hand, € corresponds to the route

Iy = Iy — Ca Y Cw, and maps onto Cy, as I, — Cy, is surjective. We
therefore have that Im(¢;) is an open subgroup of Sy, (Q;) that is dense in Ty,
and maps onto Cy,. Thus it must be dense in S, being the extension of Cy,
by Th. O]

Lemma 14. The set of all Frobenius elements F, associated to the system
{e:}1 for every v € My is Zariski-dense in Sy,.

Proof. Let X be the set of all F, as v varies over Mg. Let X C S, denote
the Zariski-closure of X in S, and X; C Su(Q;) the closure in the l-adic
topology in S, (Q;) for a prime [. Note that the pre-image of X under ¢
contains the set of all Frobenius elements in G®, which we know is dense
under the Krull topology (refer to proposition (11))). Thus, X; = Im(¢;). As
the Zariski topology is coarser than the [-adic topology, Im(¢;) = X; C X (Q).
But the previous lemma asserts that Im(¢;) is Zariski-dense in Sy, and thus

X = Sy [l
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2.5 Linear Representations of S,

We will now study representations of S;,. Recall that Sy, is an extension of the
finite Abelian group Cy, by the torus Ty,. It is thus a group of multiplicative
type, as it becomes isomorphic to a product of the torus and finite Abelian
group over a suitable extension of the base field Q. The proposition below
follows from discussions in chapter one:

Proposition 15. Suppose E is an extension of Q and ¢ € Repp(Smr)-
Then the following are equivalent:

1. The representation ¢ can be defined over Q.

2. Ifv is a finite place outside Supp(m), then the coefficients of the charac-
teristic polynomial of ¢(F,) are rational (recall that F, = F, ¢, = €(fy)
is the Frobenius element associated to the representation € defined in

42.7).

3. There exists a set of places M (or primes) of Q with density 1 (in the
sense of (19)) such that the trace Tr(¢(F,)) € Q for all v in M.

Proof. 1f ¢ is defined over Q, then clearly ¢(F,) is a matrix with rational
coefficients and part (2) follows. If part (2) holds, then (3) is immediate, since
the trace occurs as the coefficient of one of the terms in the characteristic
polynomial and Supp(m) is a finite set and hence M \ Supp(m) has density
1.

Now assume part (3) is true, and let A be the coordinate ring of Sy g
over E. Let 0, € A® E be the trace of ¢ (see (11))). Let {e;}icr be a basis of
E as a vector space over Q, where ¢ varies over an index set I, and let e¢; = 1
for some index j € I. Then, by linearity

9¢ = Z a; & €,
for a; € A. Recall that that if h € Sy(F), then the trace Tr(¢(h)) of the
matrix ¢(h) is equal to O4(h) = >, a;(h)e;. Choose h to be F, € S,(Q) for all
v € M. Then, a;(F,) will be an element in Q for alli € I and v € M. But it
is given that Tr(¢(F,)) € Q for all v € M, and by the linear independence of
the e;’s, we must have a;(F,) = 0 for all i # j and v € M. Lemma tells
us that the Frobenius elements F), are dense in Sy, and thus, if a;(F,) = 0 on
all v € M, then a; must be zero for all ¢ # j. Thus 6, = a; and hence belongs
to A which means that ¢ can be defined over Q using corollary . O
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2.6 [-adic Representations Attached to Representations

of Sy,

We will now describe the [-adic representations associated to certain linear
representations of the Q-algebraic group Sy,. Consider the case when a rep-
resentation of Sy q,, the algebraic group obtained from S, via extension by
scalars from Q to @Q, is given. Let V} be a finite-dimensional vector space
over Q, and (V}, ¢) be such a representation, i.e., a homomorphism

¢ : Sle — GLV“

defined over @QQ;. Looking at the Q;-rational points, we get a continuous
homomorphism ¢ : S,(Q;) — GLy;(Q;) = Aut(V}). Composing with ¢ :
G — S (Q)) from , leads to the following Abelian [-adic representation
of K in Vj:

o= poe: G — Aut(V)).

Proposition 16. 1. The representation ¢; is semi-simple.

2. It is unramified at all finite places v that do not belong to Supp(m) and
do not lie above the prime l. The Frobenius element associated to ¢,
F, ¢, is equal to ¢(F,).

3. It is rational if and only if the original representation ¢ : Sno, — GLy;
can be defined over Q, in the sense of (@

Proof. Part (1) follows from the fact that Sy, is a group of multiplicative type
and hence all representations of Sy, are semi-simple, as discussed in §1.9] Part
(2) follows from proposition and part (3) from proposition (15)). O

Next, we shall study the case when a rational representation of S, is
given, i.e. a representation ¢g : Sy, — GLy defined over QQ, where V is a
finite-dimensional vector space over Q. If [ is a prime, then by extension of
scalars, we obtain a representation gzﬁél) : Smaq, — GLy;, where Vi =V ®q Q.
We can now apply the previous construction on gb(()l) to obtain an Abelian
l-adic representation ¢; : G — Aut(V}) for each prime [, and the following
proposition follows:

Proposition 17. 1. The system {¢;} form a strictly compatible system
of rational Abelian [-adic representations, all of which are semi-simple.
In particular, if v ¢ Supp(m), then the Frobenius element associated to
the entire system {¢} at v, is equal to ¢o(F,) € Aut(V).
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2. There are infinitely many primes | such that ¢; is diagonalizable over

Q..

Proof. From part (1) of proposition ([L6]), we see that for a given prime [, ¢,
is semi-simple. From part (3) of the same proposition, it is rational since it
arises from the representation ¢y defined over Q. Fianlly, from part (2), for
v ¢ Supp(m) U {v € Mg : v | I}, the Frobenius element at v, associated to
the representation ¢; is gbél)(Fv). However, note that F, belongs to S,(Q),
and hence ¢§)”(Fv) = ¢o(F,). Since ¢y(F,) does not depend on the prime [,
the system {¢,;} is strictly compatible.

Now, since Sy, is a group of multiplicative type, ¢y becomes a diagonal-
izable representation over a finite extension E of Q. If we can somehow find
a prime [ such that [ is completely split in F, then £ can be embedded into
@, for this prime [, and thus the representation ¢; becomes diagonalizable.
All that remains is to show there are infinitely many primes [ that split com-
pletely in the number field E. Without loss of generality, assume E is Galois
over Q. Recall that [ is split in £ if and only if the completion E,, of E at
all places w lying above [ is exactly @Q;. Note that E, = Q; for all w | [
if and only if the Frobenius element F, is trivial for any w | [ (as the F,’s
are conjugate for all w | [). Hence, all we need to prove is that there are
infinitely many places w in E such that the Frobenius element F,, = {1},
but this follows from corollary . O

In conclusion, in this chapter we constructed a system of rational Abelian
l-adic representations of a number field K. We began with a modulus m,
and using the torus 7' = Resg,/q(G,), we obtained the Q-algebraic group Sy,
associated to m. Using this group Sn, we constructed Abelian [-adic repre-
sentations ¢; with values in S. Next, we saw how one can associate Abelian
l-adic representations to linear representations of Sy, utilizing the previous
construction. In the next chapter, we will see how any Abelian [-adic rep-
resentation of K, satisfying certain conditions (namely Local Algebraicity),
actually arise from the above method.
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3 Locally Algebraic Representations

We begin this chapter by revisiting proposition , where we constructed ¢y,
an Abelian [-adic representation of the number field K into V. Recall that V}
is a finite-dimensional Q;-vector space and that ¢; was obtained from a linear
representation ¢ : Sn g, — GLy; of Sy g,, composed with the representation
€ , i.e. ¢y = ¢ o¢. Moreover, ¢ was orginally obtained as a continuous
homomorphism ¢ : I — S,(Q;) as seen from , and we shall, in this
discussion, identify ¢; by the map ¢; : Ix — Aut(V}). Also, we have the
algebraic morphism 7 : T" — T, — Sy, from the construction of S, (8). By
extension of scalars from Q to Q, we obtain a morphism 7 : Ty, — Sm,qg, of
Qs-groups. Compose with ¢ to get the following representation of T, , which
we denote by ¢r:

¢or = pon): Ty, — GLy,. (14)

Note that on the Q; rational points, 7 coincides with m; defined in ([11)).
Now let x be an element of the open subgroup

Ul,m = H Uv,ma

vl|l

of T(Qy) =[], K7 (recall the definition of Uy n from @) Since each com-
ponent of x is a unit in Uy, , 27! € Uy Then, ¢p(z71) = ¢(xV(271)) =
$(m (7).

We can also view x as an element of the idele group I[x by mapping it to
the element in Iy, which coincides with x on the [-component and has 1’s
everywhere else. Thus,

Thus, for z in U,
&) = or(z ™). (15)

This property is what defines local algebraicity and ensures that any rational
Abelian [-adic representation arises from a linear representation of one the
groups Sy, as we shall see in the following sections.
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3.1 Definitions
3.1.1 The Local Case

Let p be a prime and let k& be a finite extension of Q,. Denote by T the
Q,-torus defined by Resy/q,(G;,). Note that T(Q,) = k*. Let V' be a finite-
dimensional Q,-vector space and GLy the associated general linear group.
From local class field theory, that there is a homomorphism

0: k" — Gal(k™/k)
called the local Artin homomorphism for k. Now suppose
p: Gal(k™/k) — GLy(Q,) = Aut(V)

is an Abelian p-adic representation of k in V. Composing with 6, we get a
continuous homomorphism p o 6 from k* = T'(Q,) into Aut(V').

Definition 21. The representation p is said to be locally algebraic if there
is an algebraic morphism r : " — GLy over QQ, such that

pob(x)=r(x),

for all z € k* close enough to 1.

Note that for the Q,-torus 7', any non-trivial open subset of the Q,-
rational points, i.e. T(Q,) = k*, is Zariski-dense in 7. Thus, the morphism
r mentioned above is unique, since it is determined by its values on a dense
open neighborhood of 1. When p is locally algebraic, r is called the algebraic
morphism associated to p.

3.1.2 The Global Case

As usual, let K be a number field, [ a prime, V] a finite-dimensional QQ;-vector
space and p : Gal(K®/K) — Aut(V}) an Abelian [-adic representation of K
in V;. If v is a finite place of K lying above [. Then, the decomposition
subgroup at v, D, C Gal(K?*"/K), is isomorphic to the local Galois group
Gal(K®/K,). Thus, by restricting p to this subgroup, we obtain an l-adic
representation of K,:

py : Gal(K*™/K,) — Aut(V}).

Since v | [, we are reduced to the local case of the previous section.
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Definition 22. The representation p is said to be locally algebraic if the
local representations p, are locally algebraic for all v dividing the prime [.

As in the local case, we can interpret local algebraicity of p in terms of
a representation of the torus 7' = Resg/(Gy,). Let Tg, be the Q-torus
obtained by extension of scalars on 7. Then,

T (Q) =T(Q) = (K @0 Q)" = [[ K-

vl

By global class field theory, we have the global Artin homomorphism 6 :
I, — Gal(K*/K), where I is the idele group of K. Also, as mentioned
in the beginning of this chapter, we can embed Hvu K into [ by the map
x — (1,...,1,2,1,...), with z at the l-component. By composing this
embedding with the Artin homomorphism, we obtain

0 : [ K; — Gal(K**/K).
vl

Proposition 18. The representation p is locally algebraic if and only if there
is an algebraic morphism f : Ty, — GLy, of Q;-groups such that

pobi(x) = f(a™),
for all © in Hv|l K close enough to 1.

Proof. Note that the torus Tg, can be written as the product Hv| , T, over Qy,
where T, = Resg, /g,(G,). From the local case there are algebraic morphisms

r, associated to each p,, and the proposition follows with f being the product
of the r,’s. O

As in the local case, the morphism f is unique and is called the algebraic
morphism associated to p.

3.2 Modulus of a Locally Algebraic Representation

Let p: Gal(K®/K) — Aut(V;) an Abelian [-adic representation of the num-
ber field K, and suppose it is also locally algebraic with f : Ty, — GLy; as
the associated algebraic morphism. Let 6 and 6; be as defined in the previous
section.
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Definition 23. Let m be a modulus in the sense of definition . The
representation p is said to be definied mod m if the following are true:

1. The composition po @ : I, = Aut(V;) is trivial on U, , for v { (.

2. The equality p o 6;(x) = f(x~!) holds for all z in the open subgroup
Ule == Hv” Uv,m of T@l (Ql)

Remark. Note that we can have multiple moduli of definition for a representa-
tion p, however, there is always a smallest one, which is called the conductor
of p.

We shall now prove that all locally algebraic representations have a mod-
ulus of definition.

Proposition 19. Fvery locally algebraic l-adic representation has a modulus
of definition.

Proof. First, suppose v is a place of the number field K such that v lies above
a prime p not equal to [, and let o denote the composition pof : I, — Aut(V)).
Consider the restriction of o to K. The group K is a p-adic Lie group and
a homomorphism from a p-adic Lie group to an [-adic one must be locally
trivial if p # . Thus, whenever v 1 [, a is trivial on an open subgroup of K.

Now, by Lie theory, we can find a neighborhood N of unity in Aut(V}),
such that N contains no non-trivial finite subgroup. Since it is open, a1 (N)
is open in the idele topology and hence must contain U, for almost all v’s.
From the above discussion, if v 1 [, then « is trivial on an open subgroup of
Q. C U,. As U, is compact, @, has finite index in U,, which means «(U,)
is finite. By choice of N, we see that a(U,) = {1} for almost all v’s. This
further implies that p is unramified at almost all finite places, since U, maps
onto the inertia subgroup at v in Gal(K*"/K). Thus, if we denote by X, the
set of finite places v of K, such that v { [, and p is ramified at v, then X is
finite.

We showed that whenever v 1 [, « is trivial on an open subgroup of K.
Thus, we can find a modulus m such that for all v € X, « is trivial on U, 4.
Note that for v ¢ X, v either divides [ or p is unramified at v, i.e. a(U,) is
trivial. Since p is locally algebraic, we also have the equality pof;(z) = f(x™1)
for all x in an open neighborhood of unity in Huu K. Thus, by choosing a
larger modulus m if necessary, we can ensure that this equality holds for all
€U = HU“ Uy m, which shows that p is defined mod m. O
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3.3 Relation with the group Sy,

Recall our discussion in the beginning of this chapter (15]), where we ended
up proving the following theorem:

Theorem 20. The l-adic representation ¢; obtained from the group Sy, is
locally algebraic and defined mod m, with ¢r (see being the associated
algebraic morphism.

The converse of the above theorem is also true, showing that every Abelian
[-adic representation arises from the construction laid out in chapter 2, for
some group Sn,. We shall prove the converse for rational representations.

Theorem 21. Let p: Gal(K*/K) — Aut(V}) an Abelian [-adic representa-
tion of the number field K, which is rational and locally algebraic with m as
the modulus of definition. Then, there exists a rational vector subspace Vy of
Vi, with that V; = Vi ®q Qi, an algebraic morphism ¢ : Sm — GLy, defined
over Q, such that p is precisely the l-adic representation ¢; attached to ¢

(in the sense of

Proof. Let r : Ty, — GLy, be the algebraic morphism associated to p. Let
¥ : Ixg — Aut(V}) be the homomorphism given by

P(x) = pob(z)-r(z),

where z; is the [-component of x. Since p is defined mod m, by the part
(1) of definition (23), p o 6 is trivial on U, for all v { I, and by part (2),
it coincides with r(z™') on Ujw. Thus, on Uy = [], Uym, p o 0 is equal to
T(J,’l_l), and hence v is trivial on U,. Moreover, by class field theory, 6 is
trivial on K*, and thus 1 coincides with » on K*. We conclude that r is
trivial on K* N Uy, and induces the algebraic morphism 7y : T g, — GLy;,
by definition of the torus Ty, (refer to . Using the morphism r, and the
map ¢, we invoke the universal property of Sy, (see . This gives us a
unique algebraic morphism defined over Q;, which we denote by ¢:

¢ Smo, — GLy;.

If m: Thwo, = Swmeq, denotes the morphism from and € : [x — I, —

Sm(Qy) the corresponding map from @D, it follows from the universal property
that ry = ¢omand ¢poe: Ix — Aut(V]) is .
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Now, let ¢; be the [-adic representation attached to the above represen-
tation ¢, and let © € [x. Then, using the above properties and the maps

defined in and it follows that

As ¢yo6 and pod agree on I, passing on to Gal(K?"/K) using the class field
isomorphism, we see that ¢; = p. Finally, since p is a rational representation,
the representation ¢ can be defined over Q, by proposition (L6]). This gives
us ¢g and the vector space Vj, completing the proof. O

Corollary 22. For each prime l', there exists an l'-adic representation py
of K that is Abelain, rational, semi-simple and also compatible with p from
theorem . This gives a strictly compatible system of representations { py }v
and for an infinite number of primes l', py is diagonalizable over Q.

Proof. The required representation is py is the I’-adic representation ¢ at-
tached to ¢ obtained in theorem . The remaining assertions follow from
proposition ([17]). H

Remark. The representation py obtained above is in fact unique upto iso-
morphism for each prime {’. This follows from the theorem in ( [9], chap. I,
§2.3).

3.4 [-Adic Representations of Elliptic Curves

We now give a brief description of the [-adic representations associated to an
elliptic curve E and state some important results in both cases: when E has
complex multiplication (CM) and when E is non-CM. Such representations
are always Abelian in the CM case, and surjective for almost all primes [ in
the non-CM case.
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Preliminaries

Let E be an elliptic curve defined over the number field K" and let End g (FE)
denote its ring of endomorphisms defined over K. Since for any integer
m, the multiplication-by-m map is an endomorphism of F, it follows that
Z C Endg(FE). If Endg(F) = Z, we say E has no complex multiplication
over K. If the endomorphism ring remains isomorphic to Z for all finite
extensions of K, we say that F has no complex multiplication.

On the other hand, when Endg(F) is strictly larger than Z, we say E
has complex multiplication over K. If E has complex multiplication, then
its endomorphism ring is an orderﬁ Rr in an imaginary quadratic field, say
F (refer to corollary 9.4, chap. III, [10]). We say that E has complex
multiplication by F' over K.

Recall the [-adic representation associated to F discussed in example ([2.2))
pr: G — Aut(Vi(E)) = GLy(Q)). (16)

Here, G = Gal(K/K), T;(E) is the Tate module attached to E, and Vj(E) =
T1(E) ®z, Q is a two-dimensional vector space over Q. Since any endomor-
phism [a] € Endg(E) is defined over K, it commutes with the action of G,
which means

o-([a]P) = la](o - P),

for all 0 € G and P € T)(F). Now, let Endg(7;(E)) denote the ring of
Zy-linear endomorphisms of Tj;(F) that commute with the action of G as
prescribed by p;. Then by [Thereom 7.4, chap. III, [10]], there is an injective
homomorphism:

In his famous paper [3] Faltings proved the following results, known as the
Tate conjectures:

Theorem 23 (Tate Conjectures). 1. The representation p; on Vi(E) is
semi-simple.

2. The map
EndK(E) X7z Zl — EndK(Tl(E))

s an isomorphism.

8An order Ry in a finitely generated Q-algebra F, is a subring of F that is finitely
generated as a Z-module and satisfies Rp ®7 Q = F.
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Elliptic Curves with Complex Multiplication

If ' has complex multiplication by F' over K, then as mentioned before,
Endg(F) is isomorphic to an order Rp in the imaginary quadratic field
F. Let R, denote the Z;-module Rr ®z Z;, and let F; be the Q;-module
Ry ®z, Q. Note that ] = Rp ®z Q = F ®qg Q;. Thus, above tells
us that 7j(F) is an Ri-module, and hence, tensoring with Q, gives a faithful
F-module structure on Vi(E). Since F' is an imaginary quadratic field, F;
is a two-dimensional Q;-vector space, and so is Vj(E). Thus, V/(E) is a free
Fi-module of dimension one. Moreover, since this Fj-module structure on V}
commutes with the action of G as given by p;, we see that p; must be given
by 1 x 1 invertible matrices, i.e. it can be written as a homomorphism:

p: G — GLy(F) = F/, (18)

for a fixed basis of V;(E) over F;. Since GL;(F}) is Abelian, the image p;(G)
must also be Abelian, and hence p; is an Abelian [-adic representation of K.

Let Tr = Resp/g(Gy,) be the two-dimensional torus attached to F', so
that Tp(Q;) = F; and p; takes values in Tp(Q;). Then, in [§2.8, chap.
I1, [9]], Serre proves the following theorem, proving in particular that p; is
locally algebraic:

Theorem 24. Let K be a number field and E be an elliptic curve with
complex multiplication over K. The system {p}; of l-adic representations
attached to the elliptic curve E, is a strictly compatible system of Abelian
rational l-adic representations of K with values in Tr. Moreover, there exists
a modulus m and an algebraic morphism ¢ : Su — Tg, such that p; is the
composition of ¢ with the system of l-adic representations {€,},; attached to

St

This theorem, as shown by Serre, is true not just for elliptic curves with
complex multiplication, but also for any Abelian variety with complex mul-
tiplication.

Elliptic Curves without Complex Multiplication

We saw in the previous section that for elliptic curves with complex mul-
tiplication, the representation p; is Abelian, and in particular, can not be
surjective. However, in the non-CM case, for almost all primes [, the im-
age of p; is surjective i.e., p(G) = Aut(T;(F)) = GLy(Z;). Serre proves the
following theorem in [Chap. IV, [9]]:
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Theorem 25. Let K be a number field and E an elliptic curve over K with
no complex multiplication. Then the image p(G) is an open subgroup in
Aut(Ty(E)) and for almost all primes 1, it is the whole set Aut(T;(E)).

Following Faltings’ proof of the Tate conjectures, a modern proof of the

above theorem can be found in [§].
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