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Introduction

The theory of l-adic representations is one that finds great importance in
several famous results in Number Theory, including Wiles’ proof of Fermat’s
Last Theorem. This essay is an exposition of the theory of Abelian l-adic
representations of number fields, as laid out by Serre in [9]. The broad aim
is to construct a system of Abelian l-adic representations and show that any
Abelian l-adic representation that satisfies certain properties is obtained from
this construction. We begin with a quick introduction to algebraic groups
and their associated characters. This is followed by an overview of represen-
tations of algebraic groups and groups of multiplicative type, presenting key
results that shall be called upon extensively in the following sections. We
introduce the notion of an l-adic representation in chapter 2 and proceed to
lay out a method to construct a certain family of Abelian l-adic representa-
tions. This construction is carried out first by defining the group Sm over Q
using algebraic tori and tools from class field theory. These groups Sm are
groups of multiplicative type and with the help of results described in the
first chapter, we see that linear representations of Sm lead to the required
system of Abelian l-adic representations. In chapter 3, we investigate the
condition that an Abelian l-adic representation should satisfy in order for
it to arise via the groups Sm as described above. The required condition is
local algebraicity and is the subject matter of this chapter. We end with a
short discussion of l-adic representations of elliptic curves and understand
how these representations differ greatly in the two cases when the elliptic
curve has complex multiplication (CM) and when it does not. In the CM
case, the representation is always Abelian (in particular, it is not surjective)
and can be obtained from one of the groups Sm, whereas in the non-CM case,
it is almost always surjective.
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1 Algebraic Groups

In this chapter, we will introduce the basic definitions of Algebraic Groups
and other related topics that will turn out to be useful in subsequent chap-
ters. We will follow the approach laid out by Milne in [6] in making these
definitions. In particular, as we will be working with affine schemes over
a field with characteristic zero, it is convenient to ignore non-closed points.
Consequently, we will be concerned with maximal spectrums (Spm) rather
than the spectrum of prime ideals of a ring (for a dictionary between Spm
and Spec, refer to ( [6], appendix A)). Throughout our discussions, if k is a
field, then k denotes the algebraic closure of k. Again, since only fields with
characteristic zero are considered, the separable closure of k, denoted ksep,
coincides with k.

1.1 Definitions and Examples

Definition 1 (Algebraic Group). An algebraic group G over a field k is an
algebraic scheme over k along with

1. an element e in G, called the identity,

2. a morphism of algebraic schemes m : G × G → G over k, called the
multiplication map, and

3. a morphism of algebraic schemes i : G → G over k, called the inverse
map,

which endow a group structure to G.

If G is an affine scheme i.e., it is isomorphic to Spm(A) for a finitely-
generated k-algebra A, then G is said to be an affine algebraic group. For
such a group G, we say A is the coordinate ring of G, denoted by k[G]. Since
we shall be exclusively dealing with affine algebraic groups in this essay, the
following discussion shows how the structure of such an affine group G can
be re-interpreted in terms of its coordinate ring A.1

1For more details, refer to (Borel [1], chap. 1, §5), or (Milne [6], chap. 3)
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1. Corresponding to the identity element e of G, we have the evaluation
at e homomorphism:

ε : A→ k

ε(f) = f(e).

2. Note that Spm(A ⊗ A) ∼= Spm(A)×Spm(A), and thus the morphism
m gives rise to the k-algebra homomorphism ∆ : A → A ⊗ A. The
map ∆ is such that if ∆(f) =

∑
gi ⊗ hi, then f(xy) =

∑
gi(x)hi(y),

for x, y ∈ G and f, gi, hi ∈ A.

3. Corresponding to the inverse morphism i, there is the k-homomorphism
i0 : A→ A, such that for all x in G and f in A, i0(f)(x) = f(x−1).

In order to translate the group axioms of G, we also introduce a homomor-
phism p0 : A → A corresponding to the trivial morphism p : G → G, where
p(x) = e for all x in G. Thus, p0(f)(x) = f(e) for all f in A. In other words,
p0 is simply the composite of ε with the inclusion of k into A. The group
axioms defining G can now be translated in terms of the following diagrams
being commutative2:

A A⊗ A

A⊗ A A⊗ A⊗ A

µ0

µ0

µ0⊗Id

Id⊗µ0

A A⊗ A

A⊗ A A

∆

∆

(p0,Id)

(Id,p0)

Id

A A⊗ A

A⊗ A A

∆

∆

p0
(i0,Id)

(Id,i0)

(1)
Note that these three diagrams are obtained from the corresponding dia-

grams describing the associativity, the identity element and the existence of
the inverse in G respectively.

Conversely, if A is a finitely generated k-algebra and the homomorphisms
(∆, ε, i0) as before are such that the diagrams given above commute, then the
affine schemeG = Spm(A) is an affine algebraic group with the multiplication
map, the inverse map and the identity element obtained from this data.
The k-algebra A forms what is called a Hopf algebra with ∆ called the
comultiplication map, ε the co-identity map and i0 called the antipode.

2Here the following notation is used: if f, g : A→ A are two k-algebra homomorphisms,
then (f, g) denotes the homomorphism from A⊗A→ A defined by a⊗ b 7→ f(a)g(b)
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Example 1.1 (Additive Group). If k[X] is the polynomial ring in the vari-
able X, then the k-variety Ga = Spm k[X] is an algebraic group called the
Additive Group. Here, ∆(X) = X⊗1+1⊗X and i0(X) = −X and ε(X) = 0.

Example 1.2 (General Linear Group). The affine variety

GLn = Spm k[X11, X12, . . . , Xnn, det(Xij)
−1]

is another affine algebraic group called the general linear group. In this
case, we have ε(Xij) = δij, ∆(Xij) =

∑
1≤k≤nXik ⊗ Xkj, and i0(Xij) =

(−1)i+j(det(Xij)
−1)Mij, where Mij denotes the determinant of the matrix

obtained from (Xij) by removing the jth row and ith column. Similary the
affine variety SLn is also an affine group.

Example 1.3 (Multiplicative Group). The affine group GL1, often denoted
Gm, is of fundamental importance in our discussion of algebraic tori and is
called the Multiplicative Group. It is the max-spectrum of the ring k[X,X−1].

Example 1.4 (Roots of Unity). For an integer n ≥ 1, we have the following
affine group µn = Spm(k[T ]/(T n − 1)), which has its comultiplication map
induced from that of Gm.

Definition 2 (Homomorphisms). A Homomorphism of k-algebraic groups
is a morphism of schemes over k that is also a homomorphism of groups.
Again, only affine groups are considered in this discussion and describing a
homomorphism α : G → H between affine groups is equivalent to giving
a homomorphism of k-algebras α∗ : k[H] → k[G] such that the following
diagram commutes:

k[H] k[G]

k[H]⊗k k[H] k[G]⊗k k[G].

∆H

α∗

∆G

α∗⊗α∗

(2)

Let G = Spm(A) be an affine algebraic group over k with coordinate ring
A. For a k-algebra R, we denote G(R) to be the set of points in G with
coordinates in R i.e.,

G(R)
def
= Homk−alg(A,R).
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1.2 Weil Restriction of Scalars

We discuss the Weil Restriction of Scalars for affine varieties. For a more
general construction, see for instance (A. Weil [11], §1.3). Let k be a number
field and K, a finite extension of k of degree d. Let V be an affine variety
over K with V = SpmK[t1, . . . , tn]/(f1, . . . , fm). Choose a basis {e1, . . . , ed}
of K over k. For 1 ≤ i ≤ n and 1 ≤ j ≤ d introduce new variables yij and
write xi = yi1e1 + · · ·+ yided. Substituting these expressions into each of the
polynomials fr, we obtain, for 1 ≤ r ≤ m,

fr(x1, . . . , xn) = pr,1e1 + · · ·+ pr,ded,

where pr,s are polynomials in the variables yij with coefficients in k. Then,
the Weil restriction of V from K to k is defined as the k-variety ResK/k(V ) =
Spm k[{yij}]/({pr,s}).
There is a natural morphism p : ResK/k(V )→ V defined over K and the pair
(ResK/k(V ), p) satisfy the following universal property:

Let X be a variety defined over k and let f : X → V be a
morphism defined over K. Then there is a unique φ : X →
ResK/k(V ) defined over k, such that f = p ◦ φ.

1.3 The Character Group

Definition 3 (Character of an Algebraic Group). A character of an algebraic
k-group G is a homomorphism χ : G→ Gm of algebraic groups over k.

Note that the set of all characters of G, denoted X(G), forms an abelian
group under point-wise multiplication: (χ1 + χ2)(g) = χ1(g)χ2(g). We say
X(G) is the Group of Rational Characters of G.

Let G be an affine algebraic group over k and k[G] = A. Recall that
giving a homomorphism of affine algebraic groups is equivalent to giving
a homomorphism between their coordinate rings. Since k[Gm] = k[t, t−1]
and ∆Gm(t) = t ⊗ t, this means that a character χ of G corresponds to
a homomorphism χ∗ : k[t, t−1] → A that makes diagram (2) commutative.
Such a homomorphism is determined by the image of the indeterminate t,
which must be mapped to a unit in A. Thus, every such homomorphism
corresponds to a unit αχ = χ∗(t) in A that satisfies ∆G(αχ) = αχ ⊗ αχ.
Such elements α in A = k[G] that are invertible and satisfy ∆G(α) = α ⊗ α
are called group-like elements of k[G]. In conclusion, there is a one-to-one
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correspondence between the characters of G and the group-like elements in
k[G].

Example 1.5. When G = Gm, then any homomorphism χ : Gm → Gm must
be of the form t 7→ tn for an integer n, and hence X(Gm) ∼= Z.

1.4 Algebraic Tori

We will now study a fundamental class of algebraic groups known as algebraic
tori, that find great importance in number theory.

Definition 4 (Split Torus). An algebraic group G over k is said to be a split
k-torus if it is isomorphic to a finite product of copies of Gm over k.

Definition 5 (Torus). An algebraic group G over k is a torus if Gksep , ob-
tained by extending scalars from k to its separable closure ksep, is a split
ksep-torus. For such a torus G, with Gksep

∼=
∏d

i=1 Gm, we say d is the
dimension of G.

It is well known that a torus T actually splits not just over ksep, but over
a unique minimal finite extension L of k called the splitting field of T , i.e.,
TL is a split L-torus.

Remark. Let k′ be a finite separable field extension of k and let G be a k′-
group. Now let K be a field containing the Galois closure of k′ and let Σ
denote the set of k-embeddings from k′ to K. Clearly, |Σ| = [k′ : k]. We first
restrict G by scalars to k and then extend by K to obtain

(Resk′/kG)K ∼=
∏
α∈Σ

Gα, (3)

where Gα is the affine K-group obtained from G by extension of scalars
from k′ to K and K is considered to be a k′-algebra with respect to the
homomorphism α.

Example 1.6. We present an example that will be studied in greater detail in
the coming sections. Let K be a number field and let T = ResK/Q(Gm) be

the algebraic group over Q obtained by restriction of scalars. Now Qsep = Q.
Then by (3),

TQsep = TQ
∼=

∏
α:K↪→Q

(Gm)α =
∏

α:K↪→Q

Gm/Q, (4)

where Gm/Q is just the multiplicative group over Q. Thus T is a Q-torus.
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1.4.1 The Character Group of a Torus

Recall that the group of rational characters on the k-group G is the set

X(G) = Mork(G,Gm),

which turned out to be an Abelian group. Following along the lines of exam-
ple 1.5, if T is the split k-torus

∏d
i=1 Gm/K of dimension d, then any character

of T is of the form (t1, . . . , td) 7→ tn1
1 · · · t

nd
d , and hence X(G) ∼= Zd. Thus if T

is a k-torus of dimension d, then X(Tksep) ∼= Zd. Thus a d-dimensional torus
gives rise to a finitely generated free abelian group of rank d. This character
group will be studied in greater detail in later sections.

1.5 A Specific Example Relating to Number Theory

We shall now resume our discussion from Example 2.1. Recall that T =
ResK/Q(Gm) turned out to be a Q-torus of dimension d for a number field K
with degree d over Q. Thus X(TQ) ∼= Zd. Let us examine this group in a little

more detail. Let Σ = Hom(K,Q) denote the set of d distinct embeddings of
K into Q, and let σ ∈ Σ. Then σ can be extended to a homomorphism of
K ⊗Q Q to Q, by taking x⊗ y to σ(x) · y, for x in K and y in Q. This gives
a morphism of Q-groups

σ̂ : TQ → Gm/Q,

and hence a character of TQ. In fact, the collection of all σ̂’s forms a basis
for the character group X(TQ). In addition, X(TQ) also admits an action by

the Galois group Gal(Q/Q) via permutation of the σ̂’s. Any character χ in
X(TQ) would thus look like ∏

σ∈Σ

(σ̂)nσ ,

where nσ are integers.
Let E be a subgroup of the group of Q-rational points on T . Then the

Zariski closure of E in T , say E, is an algebraic subgroup of T . Consider the
quotient group T/E, which we denote by TE. TE is a Q-torus. Let XE denote
its character group X(TE). Then XE is the subgroup of X(T ) consisting of
those characters that are trivial on E, i.e.

XE =

{∏
σ∈Σ

(σ̂)nσ ∈ X(T ) :
∏
σ∈Σ

σ(x)nσ = 1 for all x ∈ E

}
.
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We will make use of the above observations to work out the dimension of the
torus TE in the following example.

Example 1.7. Let K be a quadratic extension of Q and let E be the group
of units in the ring of integers of K, a subgroup of T (Q) = K∗. The group
E is finite if K is imaginary and has rank 1 if it is a real extension. When E
is finite, then it is already Zariski-closed, and hence E is finite. TE is then
a quotient of a torus by a finite group and hence is still a torus of the same
dimension.

Consider the case when K is real. Recall that the rank of the character
group of a torus is the same as the dimension of the torus. Let us try com-
puting the former. The group XE consists of all characters χ =

∏
σ∈Σ(σ̂)nσ

such that
∏

σ∈Σ σ(x)nσ = 1 for all x in E. Since E is the group of units, the
norm NK/Q(x) =

∏
σ∈Σ σ(x) = 1. K is a real quadratic extension and hence

Σ has two elements the identity and the non-trivial embedding, say σ. Thus,
for all x in E, x · σ(x) = 1. We now determine all the possibilities of the
integers nσ, which would give us the rank of XE. For ease of notation, denote
these integers as n1 and n2 corresponding to the identity and the embedding
σ respectively. Now xn1 · σ(x)n2 must be equal to 1, but x · σ(x) = 1. This
implies that we actually just need σ(x)n2−n1 = 1. If n1 6= n2 this is equivalent
to saying that σ(x) must be a root of unity for all x in E. But K is real and
hence E is infinite and cannot consist only of roots of unity. Thus n1 must
equal n2. This means that the rank of XE, and hence the dimension of TE,
must be 1.

1.6 Characters Revisited

In the following sections, we shall go through some more properties of the
character group and present some elementary facts about representations of
affine algebraic groups. We will restrict our attention to algebraic groups
defined over number fields in this discussion.

Let H be an affine commutative algebraic group over a number field K.
Recall that X(HK) denotes the group of characters of the algebraic group
HK over the algebraic closure K i.e.

X(HK) = MorK(HK ,Gm).

Then the Galois group G = Gal(K/K) acts on X(HK) as follows:
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For σ ∈ G, σ acts on HK via its action on the coordinates and
let σHK denote the automorphism of HK defined by this action.
Then the action of G on X(HK) is defined by

σ · χ = σGm ◦ χ ◦
(
σHK

)−1
,

for any χ ∈ X(HK).

Note that σ · χ = χ if and only if χ is defined over K. Now, if K[X(HK)]
denotes the group algebra of X(HK) over K, we can define a G-action on it
as

σ ·
(∑

aχχ
)

=
∑

σ(aχ)(σ · χ),

for any
∑
aχχ ∈ K[X(HK)].

If H = Spm(A), where A is the coordinate ring of H, then the coordinate
ring of HK is A = A⊗K. Recall from our previous discussion on characters of
affine algebraic groups (§1.3) that each χ : HK → Gm in X(HK) corresponds
to a group-like element αχ in A. This gives a map α : X(HK) → A defined
by α(χ) = αχ, which can be extended by linearity to obtain a homomorphism
from the group algebra K[X(HK)] to A:

α : K[X(HK)] −→ A.

This is actually a G-homomorphism for the action of G on K[X(HK)] defined
above.

Proposition 1. The homomorphism α is injective.

Proof. Let
∑
aχχ ∈ K[X(HK)] lie in the kernel of α. It follows that

α(
∑

aχχ) = 0

=⇒
∑

aχα(χ) = 0.

The following lemma is needed to complete the proof.

Lemma 2. Let A be a Hopf Algebra over a field k. Then the set of group-like
elements in A are linearly independent.

Proof. (of Lemma)
We begin with the following observation. If f is a group-like element of A

11



i.e., a unit in A that satisfies ∆(f) = f ⊗ f , then from the commutativity
of diagram (1), f = ((ε, IdA) ◦ ∆)(f). But since f is group-like, ((ε, IdA) ◦
∆)(f) = (ε, IdA)(f ⊗ f) = fε(f). Thus ε(f) = 1 for all group-like elements
f in A.

Assume that the set of group-like elements is not linearly independent.
Let n ≥ 1 be the greatest integer such that there exists a set {f1, . . . , fn} of
group-like elements in A that are linearly independent. Then, by assumption,
there exists f in A which is group-like, f 6= fi for any i and satisfies the
following relation

f =
n∑
i=1

aifi, ai ∈ k.

As f 6= 0, at 6= 0 for some 1 ≤ t ≤ n. The following equations hold:

∆(f) = f ⊗ f =
∑

1≤i,j≤n

aiaj(fi ⊗ fj),

∆(f) =
n∑
i=1

ai∆(fi) =
n∑
i=1

ai(fi ⊗ fi).

Since the elements {fi ⊗ fj}1≤i,j≤n are also linearly independent, comparing
the above equations implies that aiaj = 0 for all i 6= j, and a2

i = ai for all
i. Recall that at 6= 0, which means ai = 0 for all i 6= t, and that a2

t = at,
implying at = 1. But this means f = ft, a contradiction to our choice of f .
Thus, all group-like elements in A are linearly independent. 3

Coming back to the proof of the proposition, since α(χ) is group-like for
each χ,

∑
aχα(χ) = 0 would mean each aχ = 0 using the above lemma.

Thus
∑
aχχ = 0, implying that α is injective.

Thus, the proposition tells us that we may view K[X(HK)] as a sub-
algebra of A = A⊗K.

1.7 Linear Representations of Algebraic Groups

Let G be an affine algebraic group over a field k, and A be its coordinate
ring. Let V be a finite-dimensional vector space over k, and let n = dimk(V ).

3Using the correspondence of characters of H and the group-like elements of A, a
corollary to this lemma would be that the characters are linearly independent as functions
from H → A1. This is a well-known result due to Artin.
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Then by GLV , we mean the affine k-algebraic group GLn for a fixed basis of
V over k.

Definition 6 (Linear Representation). A homomorphism of k-algebraic groups
φ : G → GLV is said to be a linear representation of G into V , denoted by
(φ, V ).

If W is a subspace of V that is stable under G, i.e., ρ(g)(W ) ⊂ W for
all g ∈ G, then the homomorphism ρW : G→ GLW , obtained by restricting
ρ(g) to W , is called a subrepresentation of G. For simplicity, we say V is a
representation of G and W is a subrepresentation of V .

Definition 7 (Simple and semi-simple Representations). A non-zero repre-
sentation V of G is said to be simple if the only subrepresentations of V are
{0} and itself. It is called semi-simple if it can be expressed as the direct
sum of simple representations.

Example 1.8. For a group G, any character χ ∈ X(G) is a one-dimensional
representation of G, and since such representations cannot contain any non-
trivial subrepresentations, they are also simple. We will later see that for
a certain class of algebraic groups called diagonalizable groups, the set of
characters are the only simple representations.

1.8 Diagonalizable Groups

Let M be a finitely generated Abelian abstract group and let k[M ] be the
group algebra of M over k. Since M is finitely generated as an Abelian
group, k[M ] is also finitely generated as an algebra over k, using the same
generators. We can define a Hopf algebra structure on k[M ] by defining the
co-multiplication, co-identity and antipode maps as follows:

∆(m) = m⊗m, ε(m) = 1, i0(m) = m−1,

for allm ∈M . Hence, denote byD(M), the affine algebraic group Spm(k[M ]).

Example 1.9. 1. If M = Z, then D(M) ∼= Gm.

2. If M = Z/nZ for n ≥ 1, then D(M) ∼= µn.

13



Note that for two such Abelian groups M1 and M2, there is a natural
k-algebra isomorphism k[M1 × M2] ' k[M1] ⊗ k[M2] which preserves the
respective Hopf algebra structures. It follows that if

M ∼= Z× · · · × Z× (Z/n1Z)× · · · × (Z/ntZ),

for a fixed basis of M as a Z-module, then

D(M) ∼= Gm × · · · ×Gm × µn1 × · · · × µnt .

In addition, if f ∈ k[M ] is a group-like element, then f =
∑
aimi for some

ai ∈ k and mi ∈M . Following the proof of lemma (2), this means f = mi for
some i, which implies that the group-like elements of k[M ] are precisely the
elements in M . It follows that the character group X(D(M)) is isomorphic
to M . We will now define what it means for a group to be diagonalizable
and see how they are related to the groups D(M).

Definition 8 (Diagonalizable Groups). An algebraic group G over k is said
to be diagonalizable if the group-like elements in A = k[G] span it as a
k-vector space.

From the previous discussion, it follows that all algebraic groups D(M)
are diagonalizable. Now, given a diagonalizable group G, let M be the group
like elements in k[G]. From lemma (2), M is a linearly independent set.
These two facts together imply that k[M ] is isomorphic to k[G] and since the
co-multiplication, co-identity and antipode maps are defined on each m ∈M
and extended k-linearly on k[M ] and k[G] respectively, this isomorphism re-
spects the Hopf algebra structures. Thus D(M) ∼= G, giving us the following
theorem:

Theorem 3. An algebraic group is diagonalizable if and only if it is isomor-
phic to D(M) for some finitely generated Abelian (abstract) group M .

The theorem below is also true, the proof for which has been omitted and
can be found in ( [6], chap. 12 , theorem 12.9):

Theorem 4. The functor from the category of finitely generated Abelian
groups to the category of diagonalizable algebraic groups, sending M to D(M),
is a contravariant equivalence. The quasi-inverse is given by the functor send-
ing the diagonalizable group G to its character group X(G). Moreover, both
these functors are exact.
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Now, for n ≥ 1, let Dn denote the affine k-group

Spm(k[T1, . . . , Tn, T
−1
1 , . . . , T−1

n ]) ∼= D(Zn) ∼= Gm × · · · ×Gm︸ ︷︷ ︸
n times

.

It is the group of invertible diagonal n × n matrices, and hence a subgroup
of GLn. Note that any torus T becomes isomorphic to Dn over the separable
closure of k.

Definition 9. A finite-dimensional representation φ : G→ GLn of G is said
to be diagonalizable if the image φ(G) ⊆ Dn, or equivalently, the representa-
tion is a direct sum of one-dimensional subrepresentations.

It is known ( [6], chap. 12, theorem 12.12) that an algebraic group G
is diagonalizable if and only if every representation of G is diagonalizable.
Moreover, the one-dimensional representations of G are precisely the charac-
ters ofG. Thus, every representation of a diagonalizable group is semi-simple,
with the characters forming the simple objects.

1.9 Groups of Multiplicative Type

Definition 10. An algebraic group H over k is said to be a group of
multiplicative type if it becomes diagonalizable over some extension of k.

An immediate example would be any torus over k, as it becomes diago-
nalizable over ksep.

It can be shown that any group of multiplicative type, in fact, becomes
diagonalizable over a finite separable extension of k, which makes such groups
susceptible to Galois theory. This is particularly useful in drawing an equiva-
lence between these groups and a certain class of finitely generated Z-modules
as we shall see below.

Let Γ = Gal(ksep/k), equipped with the Krull topology, M be a finitely
generated Abelian group, and suppose Γ acts on M . Recall from ( [2], chap.
V, §2.3) that M is said to be a discrete Γ-module if this action is continuous
for the discrete topology on M . Equivalently, M is a discrete Γ-module if
the stabilizer in Γ of every element of M is an open subgroup of Γ.

Let H be an algebraic group over k and let X∗(H) be the character
group of Hksep . We have seen in §1.6 that the Galois group Γ acts on X∗(H).
Also recall that X∗(H)Γ, the subgroup fixed by Γ, is precisely X(G). Every
character χ : Hksep → Gm,ksep defined over ksep is in fact defined over a finite
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separable extension E of k, and is thus stabilized by the open subgroup
Gal(ksep/E). We conclude that Γ acts continuously on X∗(H), giving us a
contravariant functor X∗, from algebraic groups over k to finitely generated
Abelian groups equipped with a continuous action of Γ.

On the other hand, let M be a finitely generated Abelian group equipped
with a continuous action of Γ. Let D(M0) denote the diagonalizable group
over ksep obtained from the construction in the previous section. Then the
coordinate ring ofD(M0) is ksep[M ] and the character groupX(D(M0)) = M .
Now let D′(M) denote the algebraic group defined over k that has coordinate
ring (ksep[M ])Γ = k[MΓ]. Using the isomorphism4

ksep ⊗ k[MΓ] ∼= ksep[M ],

it follows that on extending scalars from k to ksep we get D′(M)ksep ∼=
D(M0), since their coordinate rings are isomorphic. This implies that D′(M)
is a group of multiplicative type and the character group X∗(D′(M)) =
X(D′(M)ksep) = M . The functor M  D′(M) is thus a contravariant func-
tor from finitely generated Abelian groups with a continuous action of Γ, to
groups of multiplicative type over k.

Theorem 5. The functor X∗ is an equivalence between the category of groups
of multiplicative type over k and the category of finitely generated Abelian
groups with a continuous action of Γ, with quasi-inverse given by the functor
D′. Both these functors are exact.

Remark. Tori are those groups of multiplicative type for which X∗(T ) is
torsion-free.

Representations of Groups of Multiplicative Type

Let H be a k-algebraic group with coordinate ring k[H] = A, and let
Repk(H) denote the set of isomorphism classes of linear representations of
H over k. If H is diagonalizable, then every representation of H is semi-
simple, i.e. Repk(H) is a semi-simple category with the characters in X(H)
being the simple objects. When H is a group of multiplicative type, the
following proposition will show that in this case too, Repk(H) is a semi-
simple category, however the simple objects are classified by the orbits of
Γ = Gal(ksep/k) acting on X∗(H).

4Refer to proposition 16.15, chapter 16, in Milne’s course notes on Algebraic Geometry
https://www.jmilne.org/math/CourseNotes/AG16.pdf.
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Let φ : H → GLV be a linear representation of H into a finite-dimensional
k-vector space V . Since H is of multplicative type, when considered over ksep,
it becomes diagonalizable, and hence φ decomposes into sums of characters
from X∗(H) over ksep. Let nχ(φ) denote the multiplicity of χ ∈ X∗(H) in
the decomposition of φ over ksep.

Definition 11 (Trace). The trace of φ is the element θφ =
∑

χ nχ(φ)χ in
Z[X∗(H)].

Note that if R is an Abelian k-algebra, and h ∈ H(R), then θφ(h) is
the trace of the matrix φ(h) ∈ GLV (R). Also, from proposition (1) in §1.6,
ksep[X∗(H)] can be embedded into A⊗ ksep, and in particular, θφ ∈ A⊗ ksep.

Proposition 6. The map φ → θφ is a bijection between Repk(H) and the
set of elements θ =

∑
χ nχχ ∈ Z[X∗(H)] where nχ ≥ 0 and nχ = nσ·χ for all

σ ∈ Γ and χ ∈ X∗(H).

Proof. We prove surjectivity first. Let χ be a character in X∗(H) and let Γχ
be the stabilizer of χ. Since X∗(H) is a discrete Γ-module, Γχ is an open
subgroup, and hence has finite index (as Γ is compact). Thus, χ has finitely
many conjugates under the action of Γ, one corresponding to each element in
the orbit Oχ of χ. Moreover, there is a bijection between Oχ and Γ/Γχ. Let
{χ1 = χ, χ2, . . . , χr} = {σ · χ : σ ∈ Γ/Γχ} be the set of distinct conjugates
of χ, and let

θ =
r∑
i=1

χi. (5)

If kχ denotes the fixed field of Γχ, then it is a finite extension of k with
degree equal to the index [Γ : Γχ]. In addition, it is the smallest subfield
of ksep, such that χ is defined over kχ, or equivalently, the smallest subfield
such that χ ∈ A ⊗ kχ5. Thus, χ : Hkχ → Gm,kχ is a character and a one-
dimensional representation of Hkχ . By restriction of scalars to k, we obtain
a representation, say φ, of H with degree [kχ : k]. Note that the trace θφ of
φ, would then be equal to θ, showing that θ has a pre-image under the given
map. Now, any θ satisfying the conditions of the proposition is a sum of
elements of the form 5, and hence has a pre-image, giving us the surjectivity
of the map.

Injectivity of the map follows from the following lemma:

5Here we are using the fact that X∗(H) embeds into the coordinate ring Asep = A⊗ksep
of Hksep as a result of proposition (1).
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Lemma 7 (Bourbaki, Corollary 3.8, Chapter XVII, [4]). Let k be a field
of characteristic 0, R be a k-algebra, and E,F be semi-simple R-modules,
with finite dimensions over k. For each α ∈ R, let αE and αF , denote
the corresponding k-endomorphisms on E and F respectively. If the traces
Tr(αE) and Tr(αF ) are equal for all α ∈ R, then E and F are isomorphic as
R-modules.

If (φ1, V1) and (φ2, V2) are elements in Rep(k), such that their traces are
equal, θφ1 = θφ2 , then the above lemma with R = k[H], E = V1 and F = V2

implies that V1
∼= V2, and hence the required injectivity follows.

Note that if E is an extension of k and φ ∈ Repk(H), then by extension
of scalars from k to E we obtain a representation in RepE(HE). This gives
an embedding of Repk(H) into RepE(HE).

Definition 12. Linear representations of an algebraic group over E are said
to be defined over k if they fall under the image of the embedding Repk(H) ↪→
RepE(HE).

With this embedding in mind, the following corollary is immediate from
the above proposition:

Corollary 8. Suppose ψ ∈ RepE(HE). Then ψ can be defined over k if and
only if θψ, which is naturally an element of A⊗k E, in fact belongs to A.
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2 Construction of Abelian l-adic Representa-

tions

Let K be a number field and G = Gal(Q/K) denote the absolute Galois
group of K. For a prime l, let V be a finite-dimensional vector space over Ql

with dimension n. We endow End(V ) ' Mn(Ql) with the topology induced
from Ql. Then Aut(V ) ∼= GLn(Ql) and it is an l-adic Lie group with topology
induced from that of End(V ).

Definition 13 (l-adic Representation). Consider the Krull topology on the
group G. A continuous homomorphism ρ : G → Aut(V ) is called an l-adic
representation of G (or of K).

Example 2.1 (Roots of Unity). Let µlm denote the group of (lm)th roots of
unity in Q. Then, G acts continuously on the finite groups µlm for all m.
Moreover, the sets µlm form an inverse system under the exponentiation by l
map, and the action of G commutes with these exponentiation maps. Thus,
if we let Tl(µ) denote the inverse limit lim←−

m

µlm then G acts continuously on

Tl(µ). Since µlm ∼= Z/lmZ, Tl(µ) is a free Zl-module of rank 1. Let Vl(µ)
denote the one-dimensional Ql-vector space Tl(µ)⊗Ql with G-action induced
by the action on Tl(µ). Then

χl : G→ Aut(Vl) = Q∗l

is a one-dimensional l-adic representation of G.

Example 2.2 (Elliptic Curves). Let E denote an elliptic curve defined over
K and let Elm denote the kernel of the multiplication by lm map in E(Q).
It is known that Elm ∼= (Z/lmZ)2. The sets Elm form an inverse system
and Tl(E) = lim←−

m

Elm ∼= Z2
l is called the Tate module of the elliptic curve

E. Once again, G acts continuously on each group Elm and also commutes
with the multiplication by l map that forms the inverse limit. Thus, G has
a continuous action on the Tate module Tl(E) of E, and for a fixed basis of
Tl(E) as a Zl-module, we get a continuous homomorphism:

ρl : G→ Aut(Tl(E)) ∼= GL2(Zl).

If Vl(E) is the two-dimensional Ql-vector space Tl(E) ⊗ Ql along with the
action of G, then by the natural inclusion of Zl ⊂ Ql, we obtain a continuous
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homomorphism:
ρl : G→ Aut(Vl(E)) ∼= GL2(Ql).

The homomorphism ρl is called the l-adic representation of G associated to
E.

2.1 l-adic Representations of Number Fields

LetK be a number field andMK denote the set of all finite (non-Archimedean)
places of K. If v is such a place, then we denote by κv the residue field at
v, fv the residue degree, ev the ramification index and pv the rational prime
below v (or the characteristic of κv). Then, κv is an extension of the finite
field Fpv with degree [κv : Fpv ] = fv. The completion of K with respect to
the valuation v will be denoted by Kv.

Now, suppose L is a finite Galois extension of K, with Galois group G.
If w ∈ML, then the decomposition group of w is the subgroup of G defined
by Dw = {σ ∈ G : σ(w) = w}. If w lies above v ∈ MK , then Dw is the
Galois group of Lw over Kv. There is a homomorphism of Dw onto the Galois
group Gal(lw/κv) of the residue fields, and the kernel of this map is called the
inertia group Iw of w. This leads to an isomorphism Dw/Iw ∼= Gal(lw/κv).
In addition, since lw/κv is an extension of finite fields, its Galois group is
cyclic and is generated by the Frobenius map. The corresponding generator
in Dw/Iw under the above isomorphism will be denoted by Fw and will be
called the Frobenius element.

We say w is unramified if Iw is trivial. Note that for all w ∈ ML that
divide v ∈ MK , the inertia groups Iw (resp. the decomposition groups Dw)
are conjugate to each other. Accordingly, we may also say that v is unramified
if for any (and hence all) w | v, Iw is trivial. Moreover, if v is indeed
unramified, all the Frobenius elements Fw ∈ Dw will be conjugate to each
other for all w | v. Thus, the conjugacy class of Fw in G depends only on v
and will be denoted by Fv.

We now extend the above definitions to arbitrary extensions K over Q.
In this case, MK is defined to be the projective limit of the sets MEλ , where
Eλ varies over the finite extensions of Q contained in K. Likewise, if L/K is
an arbitrary Galois extension, and w ∈ ML is such that it divides v ∈ MK ,
we define Dw, Iw, Fw and, if v is unramified, Fv the same way as above .

With these notations in mind, we have the following definition of unram-
ified representations.
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Definition 14 (Unramified Representation). If ρ : Gal(K/K)→ Aut(V ) is
an l-adic representation of K and v ∈ MK , then ρ is said to be unramified
at v if ρ(Iw) is trivial for any w ∈MK dividing v.

If ρ is unramified at v, then for all w dividing v, we obtain a homomor-
phism ρ : Dw/Iw → Aut(V ). Recall the Frobenius element Fw lies in Dw/Iw,
so the element Fw,ρ := ρ(Fw) will be called the Frobenius of w in the rep-
resentation ρ. Again, since Dw’s (respectively Iw’s) are conjugate for all w
dividing v, we see that the conjugacy class of Fw,ρ in Aut(V ) depends only
on v, and will be denoted by Fv,ρ.

Definition 15 (Rational l-adic Representations). Let ρ be an l-adic rep-
resentation unramified at v ∈ MK and let Pv,ρ(X) denote the polynomial
det(1 −X · Fv,ρ) in the variable X with coefficients in Ql.

6 Then ρ is said
to be rational (resp. integral) if there is a finite subset S of MK such that
ρ is unramified outside S, and for all v /∈ S, the coefficients of Pv,ρ(X) are
rational (resp. integral).

One may verify that the l-adic representations described in examples (2.1)
and (2.2) are both rational (in fact integral) representations.

Rather than studying a single l-adic representation ρl for a given prime
l, it is often more fruitful to consider a system of l-adic representations for
multiple primes l, that are compatible with each other in a certain sense. We
introduce this notion of compatibility in the following definitions and shall
construct such a system of compatible representations in §2.4.

Definition 16 (Compatible Representations). Let l, l′ be two distinct primes
and ρ, ρ′ be rational l-adic and l′-adic representations respectively. We say ρ
and ρ′ are compatible if there exists a finite subset S of MK such that they
are unramified outside of S and the respective characteristic polynomials
of the Frobenius elements are the same for all v not in S (or equivalently
Pv,ρ(X) = Pv,ρ′(X) for all v /∈ S).

Definition 17 (Compatible System). A Compatible System is a collection
{ρl}l of rational l-adic representations for every prime l, such that for any two
primes l and l′, ρl and ρl′ are compatible. The system is strictly compatible

6Here, by Fv,ρ, we mean any representative of the conjugacy class in Aut(V ). Pv,ρ(X)
can also be obtained by reversing the order of the coefficients of the characteristic poly-
nomial of this representative
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if there exists a finite set S ⊂ MK such that for all valuations v outside S
not dividing l, ρl is unramified at v, the coefficients of Pv,ρl(X) are rational,
and, if v does not divide l′, then Pv,ρl(X) = Pv,ρl′ (X).

Now, we define the class of l-adic representations with values in an affine
algebraic group.

Definition 18. Let H be an affine algebraic group over Q, and K a number
field. Let l be a prime and consider H(Ql) endowed with the natural topology
induced from that of Ql. A continuous homomorphism ρ : Gal(K/K) →
H(Ql) is called an l-adic representation of K with values in H.

Suppose A is the coordinate ring of such a group H over Q. An element
φ in A is said to be central if φ(xy) = φ(yx) for any x, y in H(R) and any
commutative Q-algebra R. For such an x, the conjugacy class of x in H is
rational if φ(x) lies in Q for every central element φ.

We say ρ is rational if it is unramified outside a finite set of places of
K, and if, for these places v where ρ is unramified, the conjugacy class Fv,ρ
is rational over Q in the sense defined above. Note that if H is Abelian,
then this just means Fv,ρ should lie in H(Q). If l and l′ are two primes
and ρ, ρ′ are two rational l-adic and l′-adic representations respectively, then
they are said to be compatible if there exists a finite set of places S outside
of which these representations are unramified and for any central element φ
in A, φ(Fv,ρ) = φ(Fv,ρ′) for all finite places v outside S. The definition of
compatible systems follows similarly.

2.2 Chebotarev’s Density Theorem

Here, we shall study an important result due to Chebotarev and a few im-
mediate corollaries that shall prove to be useful in later sections.

Definition 19 (Density). Let P ⊆ MK , and for each integer n ≥ 1, we set
an(P ) to be the number of valuations v ∈ P such that pfvv ≤ n. If the limit

a = lim
n→∞

an(P )

an(MK)

exists, then we say P has density a.

Note that pfvv is the number of elements in the residue field κv. Also, a
finite set always has zero density.
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Theorem 9 (Chebotarev’s Density Theorem). Let L be a finite Galois ex-
tension of the number field K with Galois group G. Suppose X is a subset
of G which is stable under conjugation by elements in G, and PX is the set
of places in MK that are unramified in L and the Frobenius class Fv lies in
X for all v ∈ PX . Then PX has density |X|/|G|.

Refer to [theorem 10, chap VIII, [5]] for a proof.

Corollary 10. For each σ ∈ G, there exist infinitely many unramified places
w ∈ML in L such that their Frobenius element Fw is equal to σ.

Proof. Taking X to be the conjugacy class of σ in G and applying the above
theorem, we see that the set PX has non-zero density and in particular, has
infinite cardinality. This means each v in PX is unramified in L and for every
w | v in L, Fw ∈ X. Thus every such Fw is conjugate to σ, and by applying
the reverse conjugation, we can find a w′ such that Fw′ is exactly σ. Since
there are infinitely many such v’s, the result follows.

Now suppose L is an arbitrary (possibly infinite) Galois extension of K
unramified outside a finite set of places S ⊂ MK . Let G be the Galois
group of L over K, equipped with the Krull topology. Consider the following
proposition:

Proposition 11. The set of Frobenius elements of the unramified places in
L is dense in G.

Proof. Let σ ∈ G and let U be an open neighborhood of σ in G. By definition
of the Krull topology, the set of subgroups Gal(L/E), with E a finite Galois
subextension of K in L, form a basis of open neighborhoods of the identity.
Thus, U must contain a coset of Gal(L/E) in G for some such E. This coset
can be uniquely identified with an element of Gal(E/K). Assume τ ∈ G
is a representative of this coset and let τ be the corresponding element in
Gal(E/K). By the above corollary, there is an unramified place w′ ∈ME in
E such that Fw′ = τ (in fact there are infinitely many such w′). Note that for
any place w1 in L that is unramified over K and restricts to a place w′1 in E,
the Frobenius element Fw1 in G maps to Fw′1 in Gal(E/K). This implies that
we can find a w in L such that its restriction to Gal(E/K) is w′, and hence
Fw = τ . We have thus shown that for each element σ in G and any open
neighborhood U of σ, there exists an unramified place w in L such that the
Frobenius element Fw lies in U . It follows that the set of Frobenius elements
is dense in G.
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2.3 Adeles and Ideles

Recall that MK denotes the set of finite places of the number field K. We let
M∞

K denote the set of Archimedean or infinite places of K, and MK be the
union of the finite and infinite places. Thus, if v ∈MK , then the completion
of K at v, Kv, will be either R or C if v is infinite, and is a non-Archimedean
valued field if v is finite. In the latter case, we know Kv is locally compact
and we will denote the valuation ring of Kv by Rv (a compact subring of
Kv), the group of units in the valuation ring by Uv and the uniformizer by
πv. Now, let S be a finite subset of MK containing all the infinite places.
Consider

AK(S) =
∏
v∈S

Kv ×
∏
v/∈S

Rv,

which, under the usual product topology, is locally compact. Under component-
wise addition and multiplication, AK(S) is also a topological ring. We denote
by AK , the union of all the sets AK(S) and prescribe the topology on AK by
decreeing that all sets AK(S) be open subrings 7. AK , called the adele (adèle)
ring of the number field K, is hence a locally compact topological ring. It
consists of elements of the form (xv) ∈

∏
Kv such that |xv|v ≤ 1 for almost

all v. In addition, we may obtain a fundamental system of neighborhoods of
0 in AK by taking all sets of the form

∏
Xv, where each Xv is a neighborhood

of 0 in Kv and Xv = Rv for almost all v. Also, the natural embedding of K
into

∏
Kv actually lands in AK , i.e. if x ∈ K, then the element (xv) given

by xv = x for all v, lies in AK . The image of K under this injection is called
the ring of principal adeles.

We now define the idele (idèle) group IK associated toK. Set-theoretically,
it is the group of units in AK : it consists of elements of the form (xv) ∈

∏
K∗v ,

such that xv lies in Uv for almost all finite v. However, under the subspace
topology, it is not a topological group since inversion is not continuous. We
thus give it the coarsest topology for which both inversion and the embed-
ding of IK ↪→ AK are continuous maps. We define the Idele Class group to
be the quotient C = I/K∗. As before, the injection of K∗ into IK gives the

7Note that the sets AK(S) form a directed system over all finite sets S: if S ⊂ S′, then
AK(S) embeds as an open subgroup of AK(S′). We may thus give an equivalent definition
of AK as the direct limit of these sets along with the direct limit topology
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group of principal ideles, and we will often denote these principal ideles by
K∗ itself.

2.4 The Groups Sm

Definition 20 (Modulus). A modulus m of K is a collection of non-negative
integers {mv}v∈MK

, such that mv = 0 for all but finitely many v in MK . The
finite subset of MK consisting of all v for which mv is non-zero is called the
support of m and will be denoted by Supp(m).

For such a modulus m and a valuation v ∈ MK , consider the following
set:

Uv,m =


conn. comp of K∗v if v ∈M∞

K

1 + πmvv Rv if v ∈ Supp(m)
Uv otherwise.

(6)

Note that the connected component of K∗v is either R>0 or C∗, if v ∈ M∞
K .

Then Um =
∏

v Uv,m, is an open subgroup of IK .
Let

E be the group of units in K,

Em = E ∩ Um,

Im = IK/Um, and

Cm = IK/(K∗Um).

Moreover, if x = (xv) is a principal idele and if x lies in Um, then x must be
a unit in K. Thus Em may be equivalently defined as K∗∩Um and we obtain
the exact sequence:

1→ K∗/Em → Im → Cm → 1. (7)

Cm is the ray class group associated to m and is known to have finite cardi-
nality. By class field theory, if D denotes the connected component of unity
in the idele class group C, then the quotient C/D is isomorphic to the Galois
group of the maximal Abelian extension of K and is infact the inverse limit
of the Cm’s.

Now, let T denote the torus ResK/Q(Gm). Then Em is a subgroup of
the Q-rational points T (Q). Let Em denote the Zariski closure of Em in T .
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The quotient group T/Em, which we denote by Tm, is also a Q-torus. We
immediately obtain a homomorphism K∗/Em → Tm(Q). This gives us a
diagram of the form:

K∗/Em Im

Tm(Q).

Using the above diagram and the exact sequence (7), we construct a Q-
algebraic group Sm such that Sm(Q) is the push-out of the above diagram. If
the finite group Cm

∼= Im/(K
∗/Em) has cardinality r, then Sm is the disjoint

union of r copies of Tm. Sm is said to be the extension of the constant
algebraic group Cm by Tm, yielding the following exact sequence of algebraic
groups:

1 Tm Sm Cm 1. (8)

Combining this with the previous exact sequence, we obtain the following
commutative diagram:

1 K∗/Em Im Cm 1

1 Tm(Q) Sm(Q) Cm 1.

Id (9)

Note that, by construction of Sm as a pushout, it satisfies the following
universal property:

If H is an algebraic group over Q with morphisms a : Tm → H
and b : Im → H(Q) such that the following diagram commutes

K∗/Em Im

Tm(Q) H(Q),

(10)

then there exists a unique morphism δ : Sm → H defined over Q,
such that a and b are obtained by composing the corresponding
morphisms of Sm with δ.
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Remark. The algebraic group Sm over Q is a group of multiplicative type by
construction, since after a suitable finite extension of Q, it becomes isomor-
phic to the product of a torus and finite Abelian group.

We denote by ε the homomorphism ε : IK → Im → Sm(Q) and by π the alge-
braic morphism T → Tm → Sm, both obtained from the above construction.
Considering the Ql-rational points gives the homomorphism

πl : T (Ql)→ Sm(Ql). (11)

As K ⊗ Ql =
∏

v|lKv, we note that T (Ql) = (K ⊗ Ql)
∗ =

∏
v|lK

∗
v . This

is a direct factor of the idele group IK and we denote the projection of IK
onto T (Ql) by projl. For x ∈ IK , we say that projl(x) is the l-component of
x. The composition πl ◦ projl : IK → Sm(Ql) is a continuous homomorphism
which we denote by αl.

It is easy to see that the following diagram is commutative:

K∗ IK

K∗/Em Im

Combining this diagram with (9) shows that αl and ε agree on K∗. If

εl : IK → Sm(Ql) (12)

denotes the homomorphism defined by εl(x) = ε(x) ·αl(x−1), then εl is trivial
on K∗, and thus factors through the quotient IK/K∗ which is precisely the
idele class group C of K, giving us a map from C to Sm(Ql). In addition,
since the continuous image of a connected set is connected and Sm(Ql), being
an l-adic Lie group, is totally disconnected, the image of the set D ⊂ C must
be trivial. As noted previously, the quotient C/D is isomorphic to the Galois
group Gab of the maximal Abelian extension of K, and as a result, we obtain
an l-adic representation of Gab with values in Sm:

εl : Gab → Sm(Ql) (13)

Proposition 12. The representation εl is a rational and Abelian l-adic rep-
resentation. It is unramified outside Supp(m) ∪ {v ∈ MK : v | l}. If εl is
unramified at v and fv denotes the idele (1, 1, . . . , πv, . . . ), with the uniformiz-
ing parameter πv in the v-component, then ε(fv) ∈ Sm(Q) is the Frobenius
class Fv,εl associated to εl.
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Proof. Before beginning the proof, we shall recall a few facts from Class
Field Theory. Firstly, there is a natural embedding of K∗v into IK as follows:
a ∈ K∗v is identified with the idele (1, 1, . . . , a, . . . ), with a in the v-position.
With this embedding in mind, the group of units Uv is mapped onto the
inertia subgroup of v in Gab under the class field isomorphism C/D

'−→ Gab.
Similarly, the uniformizing parameter πv in K∗v is mapped onto the Frobenius
class of v in Gab (which is a singleton in this case).
Now suppose v /∈ Supp(m) and let a ∈ Uv. Then under the aforementioned
embedding of K∗v into IK , a belongs to the group Um. Since the map ε is
obtained after modding out by Um, ε(a) = 1. Further, if v - l (i.e. pv 6= l),
then the l-component projl(a) of a is trivial and hence αl(a

−1) = 1. This
shows that εl(a) = ε(a) · αl(a−1) = 1 for all a in Uv, where v /∈ Supp(m) and
v - l. Since Uv is mapped onto the inertia subgroup of v in Gab, it can be
concluded that εl is trivial on this inertia group and hence unramified at all
such v.
Finally, for such a finite place v, εl(fv) = ε(fv)αl(f

−1
v ) which is simply ε(fv) as

the l-component of fv is trivial. Now, since Sm is Abelian, the Frobenius class
is a singleton and hence the element ε(fv) is the required Frobenius element
Fv,εl . Note that ε(fv) actually lies in Sm(Q), which means the coefficients
of its characteristic polynomial would be rational, and thus, εl is a rational
l-adic representation.

Moreover, it can be seen from their respective definitions that both fv and
the map ε are independent of the prime l. Thus, the Frobenius element Fv,εl =
ε(fv) stays the same as we vary the prime l, i.e. for any two primes l and l′

and v /∈ Supp(m) ∪ {v ∈ MK : v | l or v | l′}, εl(fv) = εl′(fv) = ε(fv). This
means that the collection {εl}l form a strictly compatible system of rational
Abelian l-adic representations. Since Fv,εl is independent of the prime l, we
denote it by Fv, the Frobenius element associated to the system {εl}l. The
following lemmas will establish that the set of all Frobenius elements Fv is
Zariski-dense in Sm.

Lemma 13. The image Im(εl) = εl(G
ab) of the representation εl is Zariski-

dense in Sm.

Proof. Suppose x belongs to the open subgroup

Ul,m =
∏
v|l

Uv,m
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in K∗l =
∏

v|lK
∗
v = T (Ql). Embedding this subgroup into the ideles IK (with

1’s at all places not dividing l), we see that ε(x) = 1 since x ∈ Um, and
αl(x

−1) = πl(x
−1). Thus, by definition of εl in (12), εl(x) = πl(x

−1) on the
open subgroup Ul,m. Since the map Tm(Ql) → Sm(Ql) is injective, we have
πl(Ul,m) ⊂ Tm(Ql) ⊂ Sm(Ql), and this image is open. Thus Im(εl) contains
an open subgroup and is therefore open in Sm(Ql). Moreover, πl(Ul,m) is a
non-empty open set of Tm(Ql) and is thus dense in Tm. Finally, consider the
following diagram:

Ik

1 K∗/Em Im Cm 1

1 Tm(Ql) Sm(Ql) Cm 1

IK .

Id

Again, εl has two parts: one corresponding to ε and the other to αl. On
composition with the map Sm(Ql)→ Cm, αl corresponds to the route IK →
Tm(Ql) → Sm(Ql) → Cm and is thus trivial by exactness of the bottom
row in the above diagram. On the other hand, ε corresponds to the route

IK → Im → Cm
Id→ Cm, and maps onto Cm as Im → Cm is surjective. We

therefore have that Im(εl) is an open subgroup of Sm(Ql) that is dense in Tm
and maps onto Cm. Thus it must be dense in Sm, being the extension of Cm

by Tm.

Lemma 14. The set of all Frobenius elements Fv associated to the system
{εl}l for every v ∈MK is Zariski-dense in Sm.

Proof. Let X be the set of all Fv as v varies over MK . Let X ⊂ Sm denote
the Zariski-closure of X in Sm and Xl ⊂ Sm(Ql) the closure in the l-adic
topology in Sm(Ql) for a prime l. Note that the pre-image of X under εl
contains the set of all Frobenius elements in Gab, which we know is dense
under the Krull topology (refer to proposition (11)). Thus, Xl = Im(εl). As
the Zariski topology is coarser than the l-adic topology, Im(εl) = Xl ⊆ X(Ql).
But the previous lemma asserts that Im(εl) is Zariski-dense in Sm, and thus
X = Sm.
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2.5 Linear Representations of Sm

We will now study representations of Sm. Recall that Sm is an extension of the
finite Abelian group Cm by the torus Tm. It is thus a group of multiplicative
type, as it becomes isomorphic to a product of the torus and finite Abelian
group over a suitable extension of the base field Q. The proposition below
follows from discussions in chapter one:

Proposition 15. Suppose E is an extension of Q and φ ∈ RepE(Sm,E).
Then the following are equivalent:

1. The representation φ can be defined over Q.

2. If v is a finite place outside Supp(m), then the coefficients of the charac-
teristic polynomial of φ(Fv) are rational (recall that Fv = Fv,εl = ε(fv)
is the Frobenius element associated to the representation εl defined in
§2.4).

3. There exists a set of places M (or primes) of Q with density 1 (in the
sense of (19)) such that the trace Tr(φ(Fv)) ∈ Q for all v in M .

Proof. If φ is defined over Q, then clearly φ(Fv) is a matrix with rational
coefficients and part (2) follows. If part (2) holds, then (3) is immediate, since
the trace occurs as the coefficient of one of the terms in the characteristic
polynomial and Supp(m) is a finite set and hence MK \ Supp(m) has density
1.

Now assume part (3) is true, and let A be the coordinate ring of Sm,E

over E. Let θφ ∈ A⊗E be the trace of φ (see (11)). Let {ei}i∈I be a basis of
E as a vector space over Q, where i varies over an index set I, and let ej = 1
for some index j ∈ I. Then, by linearity

θφ =
∑
i

ai ⊗ ei,

for ai ∈ A. Recall that that if h ∈ Sm(E), then the trace Tr(φ(h)) of the
matrix φ(h) is equal to θφ(h) =

∑
i ai(h)ei. Choose h to be Fv ∈ Sm(Q) for all

v ∈M . Then, ai(Fv) will be an element in Q for all i ∈ I and v ∈M . But it
is given that Tr(φ(Fv)) ∈ Q for all v ∈M , and by the linear independence of
the ei’s, we must have ai(Fv) = 0 for all i 6= j and v ∈M . Lemma (14) tells
us that the Frobenius elements Fv are dense in Sm, and thus, if ai(Fv) = 0 on
all v ∈M , then ai must be zero for all i 6= j. Thus θφ = aj and hence belongs
to A which means that φ can be defined over Q using corollary (8).
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2.6 l-adic Representations Attached to Representations
of Sm

We will now describe the l-adic representations associated to certain linear
representations of the Q-algebraic group Sm. Consider the case when a rep-
resentation of Sm,Ql , the algebraic group obtained from Sm via extension by
scalars from Q to Ql, is given. Let Vl be a finite-dimensional vector space
over Ql, and (Vl, φ) be such a representation, i.e., a homomorphism

φ : Sm,Ql → GLVl ,

defined over Ql. Looking at the Ql-rational points, we get a continuous
homomorphism φ : Sm(Ql) → GLVl(Ql) = Aut(Vl). Composing with εl :
Gab → Sm(Ql) from (13), leads to the following Abelian l-adic representation
of K in Vl:

φl = φ ◦ εl : Gab → Aut(Vl).

Proposition 16. 1. The representation φl is semi-simple.

2. It is unramified at all finite places v that do not belong to Supp(m) and
do not lie above the prime l. The Frobenius element associated to φl,
Fv,φl is equal to φ(Fv).

3. It is rational if and only if the original representation φ : Sm,Ql → GLVl
can be defined over Q, in the sense of (12).

Proof. Part (1) follows from the fact that Sm is a group of multiplicative type
and hence all representations of Sm are semi-simple, as discussed in §1.9. Part
(2) follows from proposition (12) and part (3) from proposition (15).

Next, we shall study the case when a rational representation of Sm is
given, i.e. a representation φ0 : Sm → GLV defined over Q, where V is a
finite-dimensional vector space over Q. If l is a prime, then by extension of
scalars, we obtain a representation φ

(l)
0 : Sm,Ql → GLVl , where Vl = V ⊗Q Ql.

We can now apply the previous construction on φ
(l)
0 to obtain an Abelian

l-adic representation φl : Gab → Aut(Vl) for each prime l, and the following
proposition follows:

Proposition 17. 1. The system {φl} form a strictly compatible system
of rational Abelian l-adic representations, all of which are semi-simple.
In particular, if v /∈ Supp(m), then the Frobenius element associated to
the entire system {φl} at v, is equal to φ0(Fv) ∈ Aut(V ).
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2. There are infinitely many primes l such that φl is diagonalizable over
Ql.

Proof. From part (1) of proposition (16), we see that for a given prime l, φl
is semi-simple. From part (3) of the same proposition, it is rational since it
arises from the representation φ0 defined over Q. Fianlly, from part (2), for
v /∈ Supp(m) ∪ {v ∈ MK : v | l}, the Frobenius element at v, associated to

the representation φl is φ
(l)
0 (Fv). However, note that Fv belongs to Sm(Q),

and hence φ
(l)
0 (Fv) = φ0(Fv). Since φ0(Fv) does not depend on the prime l,

the system {φl} is strictly compatible.
Now, since Sm is a group of multiplicative type, φ0 becomes a diagonal-

izable representation over a finite extension E of Q. If we can somehow find
a prime l such that l is completely split in E, then E can be embedded into
Ql for this prime l, and thus the representation φl becomes diagonalizable.
All that remains is to show there are infinitely many primes l that split com-
pletely in the number field E. Without loss of generality, assume E is Galois
over Q. Recall that l is split in E if and only if the completion Ew of E at
all places w lying above l is exactly Ql. Note that Ew ∼= Ql for all w | l
if and only if the Frobenius element Fw is trivial for any w | l (as the Fw’s
are conjugate for all w | l). Hence, all we need to prove is that there are
infinitely many places w in E such that the Frobenius element Fw = {1},
but this follows from corollary (10).

In conclusion, in this chapter we constructed a system of rational Abelian
l-adic representations of a number field K. We began with a modulus m,
and using the torus T = ResK/Q(Gm), we obtained the Q-algebraic group Sm

associated to m. Using this group Sm, we constructed Abelian l-adic repre-
sentations εl with values in Sm. Next, we saw how one can associate Abelian
l-adic representations to linear representations of Sm utilizing the previous
construction. In the next chapter, we will see how any Abelian l-adic rep-
resentation of K, satisfying certain conditions (namely Local Algebraicity),
actually arise from the above method.
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3 Locally Algebraic Representations

We begin this chapter by revisiting proposition (16), where we constructed φl,
an Abelian l-adic representation of the number field K into Vl. Recall that Vl
is a finite-dimensional Ql-vector space and that φl was obtained from a linear
representation φ : Sm,Ql → GLVl of Sm,Ql , composed with the representation
εl (13), i.e. φl = φ ◦ εl. Moreover, εl was orginally obtained as a continuous
homomorphism εl : IK → Sm(Ql) as seen from (12), and we shall, in this
discussion, identify φl by the map φl : IK → Aut(Vl). Also, we have the
algebraic morphism π : T → Tm → Sm from the construction of Sm (8). By
extension of scalars from Q to Ql, we obtain a morphism π(l) : TQl → Sm,Ql of
Ql-groups. Compose with φ to get the following representation of TQl , which
we denote by φT :

φT = φ ◦ π(l) : TQl → GLVl . (14)

Note that on the Ql rational points, π(l) coincides with πl defined in (11).
Now let x be an element of the open subgroup

Ul,m =
∏
v|l

Uv,m,

of T (Ql) =
∏

v|lK
∗
v (recall the definition of Uv,m from 6). Since each com-

ponent of x is a unit in Uv,m, x−1 ∈ Ul,m. Then, φT (x−1) = φ(π(l)(x−1)) =
φ(πl(x

−1)).
We can also view x as an element of the idele group IK by mapping it to

the element in IK , which coincides with x on the l-component and has 1’s
everywhere else. Thus,

φl(x) = φ(εl(x)) = φ(ε(x) · α(x−1))

= φ(ε(x)πl(x
−1))

= φ(πl(x
−1)) (as x ∈ Um and ε is trivial on Um).

Thus, for x in Ul,m,
φl(x) = φT (x−1). (15)

This property is what defines local algebraicity and ensures that any rational
Abelian l-adic representation arises from a linear representation of one the
groups Sm, as we shall see in the following sections.
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3.1 Definitions

3.1.1 The Local Case

Let p be a prime and let k be a finite extension of Qp. Denote by T the
Qp-torus defined by Resk/Qp(Gm). Note that T (Qp) = k∗. Let V be a finite-
dimensional Qp-vector space and GLV the associated general linear group.
From local class field theory, that there is a homomorphism

θ : k∗ → Gal(kab/k)

called the local Artin homomorphism for k. Now suppose

ρ : Gal(kab/k)→ GLV (Qp) = Aut(V )

is an Abelian p-adic representation of k in V . Composing with θ, we get a
continuous homomorphism ρ ◦ θ from k∗ = T (Qp) into Aut(V ).

Definition 21. The representation ρ is said to be locally algebraic if there
is an algebraic morphism r : T → GLV over Qp such that

ρ ◦ θ(x) = r(x−1),

for all x ∈ k∗ close enough to 1.

Note that for the Qp-torus T , any non-trivial open subset of the Qp-
rational points, i.e. T (Qp) = k∗, is Zariski-dense in T . Thus, the morphism
r mentioned above is unique, since it is determined by its values on a dense
open neighborhood of 1. When ρ is locally algebraic, r is called the algebraic
morphism associated to ρ.

3.1.2 The Global Case

As usual, let K be a number field, l a prime, Vl a finite-dimensional Ql-vector
space and ρ : Gal(Kab/K)→ Aut(Vl) an Abelian l-adic representation of K
in Vl. If v is a finite place of K lying above l. Then, the decomposition
subgroup at v, Dv ⊂ Gal(Kab/K), is isomorphic to the local Galois group
Gal(Kab

v /Kv). Thus, by restricting ρ to this subgroup, we obtain an l-adic
representation of Kv:

ρv : Gal(Kab
v /Kv)→ Aut(Vl).

Since v | l, we are reduced to the local case of the previous section.
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Definition 22. The representation ρ is said to be locally algebraic if the
local representations ρv are locally algebraic for all v dividing the prime l.

As in the local case, we can interpret local algebraicity of ρ in terms of
a representation of the torus T = ResK/Q(Gm). Let TQl be the Ql-torus
obtained by extension of scalars on T . Then,

TQl(Ql) = T (Ql) = (K ⊗Q Ql)
∗ =

∏
v|l

K∗v .

By global class field theory, we have the global Artin homomorphism θ :
Ik → Gal(Kab/K), where IK is the idele group of K. Also, as mentioned
in the beginning of this chapter, we can embed

∏
v|lK

∗
v into IK by the map

x 7→ (1, . . . , 1, x, 1, . . . ), with x at the l-component. By composing this
embedding with the Artin homomorphism, we obtain

θl :
∏
v|l

K∗v → Gal(Kab/K).

Proposition 18. The representation ρ is locally algebraic if and only if there
is an algebraic morphism f : TQl → GLVl of Ql-groups such that

ρ ◦ θl(x) = f(x−1),

for all x in
∏

v|lK
∗
v close enough to 1.

Proof. Note that the torus TQl can be written as the product
∏

v|l Tv over Ql,

where Tv = ResKv/Ql(Gm). From the local case there are algebraic morphisms
rv associated to each ρv, and the proposition follows with f being the product
of the rv’s.

As in the local case, the morphism f is unique and is called the algebraic
morphism associated to ρ.

3.2 Modulus of a Locally Algebraic Representation

Let ρ : Gal(Kab/K)→ Aut(Vl) an Abelian l-adic representation of the num-
ber field K, and suppose it is also locally algebraic with f : TQl → GLVl as
the associated algebraic morphism. Let θ and θl be as defined in the previous
section.
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Definition 23. Let m be a modulus in the sense of definition (20). The
representation ρ is said to be definied mod m if the following are true:

1. The composition ρ ◦ θ : Ik → Aut(Vl) is trivial on Uv,m for v - l.

2. The equality ρ ◦ θl(x) = f(x−1) holds for all x in the open subgroup
Ul,m =

∏
v|l Uv,m of TQl(Ql).

Remark. Note that we can have multiple moduli of definition for a representa-
tion ρ, however, there is always a smallest one, which is called the conductor
of ρ.

We shall now prove that all locally algebraic representations have a mod-
ulus of definition.

Proposition 19. Every locally algebraic l-adic representation has a modulus
of definition.

Proof. First, suppose v is a place of the number field K such that v lies above
a prime p not equal to l, and let α denote the composition ρ◦θ : Ik → Aut(Vl).
Consider the restriction of α to K∗v . The group K∗v is a p-adic Lie group and
a homomorphism from a p-adic Lie group to an l-adic one must be locally
trivial if p 6= l. Thus, whenever v - l, α is trivial on an open subgroup of K∗v .

Now, by Lie theory, we can find a neighborhood N of unity in Aut(Vl),
such that N contains no non-trivial finite subgroup. Since it is open, α−1(N)
is open in the idele topology and hence must contain Uv for almost all v’s.
From the above discussion, if v - l, then α is trivial on an open subgroup of
Qv ⊂ Uv. As Uv is compact, Qv has finite index in Uv, which means α(Uv)
is finite. By choice of N , we see that α(Uv) = {1} for almost all v’s. This
further implies that ρ is unramified at almost all finite places, since Uv maps
onto the inertia subgroup at v in Gal(Kab/K). Thus, if we denote by X, the
set of finite places v of K, such that v - l, and ρ is ramified at v, then X is
finite.

We showed that whenever v - l, α is trivial on an open subgroup of K∗v .
Thus, we can find a modulus m such that for all v ∈ X, α is trivial on Uv,m.
Note that for v /∈ X, v either divides l or ρ is unramified at v, i.e. α(Uv) is
trivial. Since ρ is locally algebraic, we also have the equality ρ◦θl(x) = f(x−1)
for all x in an open neighborhood of unity in

∏
v|lK

∗
v . Thus, by choosing a

larger modulus m if necessary, we can ensure that this equality holds for all
x ∈ Ul,m =

∏
v|l Uv,m, which shows that ρ is defined mod m.
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3.3 Relation with the group Sm

Recall our discussion in the beginning of this chapter (15), where we ended
up proving the following theorem:

Theorem 20. The l-adic representation φl obtained from the group Sm, is
locally algebraic and defined mod m, with φT (see 14) being the associated
algebraic morphism.

The converse of the above theorem is also true, showing that every Abelian
l-adic representation arises from the construction laid out in chapter 2, for
some group Sm. We shall prove the converse for rational representations.

Theorem 21. Let ρ : Gal(Kab/K)→ Aut(Vl) an Abelian l-adic representa-
tion of the number field K, which is rational and locally algebraic with m as
the modulus of definition. Then, there exists a rational vector subspace V0 of
Vl, with that Vl = V0 ⊗Q Ql, an algebraic morphism φ0 : Sm → GLV0 defined
over Q, such that ρ is precisely the l-adic representation φl attached to φ0

(in the sense of §2.6)

Proof. Let r : TQl → GLVl be the algebraic morphism associated to ρ. Let
ψ : IK → Aut(Vl) be the homomorphism given by

ψ(x) = ρ ◦ θ(x) · r(xl),

where xl is the l-component of x. Since ρ is defined mod m, by the part
(1) of definition (23), ρ ◦ θ is trivial on Uv,m for all v - l, and by part (2),
it coincides with r(x−1) on Ul,m. Thus, on Um =

∏
v Uv,m, ρ ◦ θ is equal to

r(x−1
l ), and hence ψ is trivial on Um. Moreover, by class field theory, θ is

trivial on K∗, and thus ψ coincides with r on K∗. We conclude that r is
trivial on K∗ ∩ Um and induces the algebraic morphism rm : Tm,Ql → GLVl ,
by definition of the torus Tm (refer to §2.4). Using the morphism rm and the
map ψ, we invoke the universal property of Sm (see (10). This gives us a
unique algebraic morphism defined over Ql, which we denote by φ:

φ : Sm,Ql → GLVl .

If π : Tm,Ql → Sm,Ql denotes the morphism from (8) and ε : IK → Im →
Sm(Ql) the corresponding map from (9), it follows from the universal property
that rm = φ ◦ π and φ ◦ ε : IK → Aut(Vl) is ψ.
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Now, let φl be the l-adic representation attached to the above represen-
tation φ, and let x ∈ IK . Then, using the above properties and the maps
defined in (12) and §2.6, it follows that

φl ◦ θ(x) = φ ◦ εl(x)

= φ(ε(x) · αl(x−1))

= φ(ε(x))φ(αl(x
−1))

= ψ(x)φ(πl(x
−1
l ))

= ρ ◦ θ(x)r(xl) · r(x−1
l )

= ρ ◦ θ.

As φl◦θ and ρ◦θ agree on IK , passing on to Gal(Kab/K) using the class field
isomorphism, we see that φl = ρ. Finally, since ρ is a rational representation,
the representation φ can be defined over Q, by proposition (16). This gives
us φ0 and the vector space V0, completing the proof.

Corollary 22. For each prime l′, there exists an l′-adic representation ρl′
of K that is Abelain, rational, semi-simple and also compatible with ρ from
theorem (21). This gives a strictly compatible system of representations {ρl′}l′
and for an infinite number of primes l′, ρl′ is diagonalizable over Ql′.

Proof. The required representation is ρl′ is the l′-adic representation φl′ at-
tached to φ obtained in theorem (21). The remaining assertions follow from
proposition (17).

Remark. The representation ρl′ obtained above is in fact unique upto iso-
morphism for each prime l′. This follows from the theorem in ( [9], chap. I,
§2.3).

3.4 l-Adic Representations of Elliptic Curves

We now give a brief description of the l-adic representations associated to an
elliptic curve E and state some important results in both cases: when E has
complex multiplication (CM) and when E is non-CM. Such representations
are always Abelian in the CM case, and surjective for almost all primes l in
the non-CM case.
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Preliminaries

Let E be an elliptic curve defined over the number field K and let EndK(E)
denote its ring of endomorphisms defined over K. Since for any integer
m, the multiplication-by-m map is an endomorphism of E, it follows that
Z ⊆ EndK(E). If EndK(E) ∼= Z, we say E has no complex multiplication
over K. If the endomorphism ring remains isomorphic to Z for all finite
extensions of K, we say that E has no complex multiplication.

On the other hand, when EndK(E) is strictly larger than Z, we say E
has complex multiplication over K. If E has complex multiplication, then
its endomorphism ring is an order8 RF in an imaginary quadratic field, say
F (refer to corollary 9.4, chap. III, [10]). We say that E has complex
multiplication by F over K.

Recall the l-adic representation associated to E discussed in example (2.2)

ρl : G→ Aut(Vl(E)) ∼= GL2(Ql). (16)

Here, G = Gal(K/K), Tl(E) is the Tate module attached to E, and Vl(E) =
Tl(E)⊗Zl Ql is a two-dimensional vector space over Ql. Since any endomor-
phism [α] ∈ EndK(E) is defined over K, it commutes with the action of G,
which means

σ · ([α]P ) = [α](σ · P ),

for all σ ∈ G and P ∈ Tl(E). Now, let EndK(Tl(E)) denote the ring of
Zl-linear endomorphisms of Tl(E) that commute with the action of G as
prescribed by ρl. Then by [Thereom 7.4, chap. III, [10]], there is an injective
homomorphism:

EndK(E)⊗Z Zl ↪→ EndK(Tl(E)). (17)

In his famous paper [3] Faltings proved the following results, known as the
Tate conjectures:

Theorem 23 (Tate Conjectures). 1. The representation ρl on Vl(E) is
semi-simple.

2. The map
EndK(E)⊗Z Zl → EndK(Tl(E))

is an isomorphism.

8An order RF in a finitely generated Q-algebra F , is a subring of F that is finitely
generated as a Z-module and satisfies RF ⊗Z Q ∼= F .

39



Elliptic Curves with Complex Multiplication

If E has complex multiplication by F over K, then as mentioned before,
EndK(E) is isomorphic to an order RF in the imaginary quadratic field
F . Let Rl denote the Zl-module RF ⊗Z Zl, and let Fl be the Ql-module
Rl ⊗Zl Ql. Note that Fl ∼= RF ⊗Z Ql

∼= F ⊗Q Ql. Thus, (17) above tells
us that Tl(E) is an Rl-module, and hence, tensoring with Ql gives a faithful
Fl-module structure on Vl(E). Since F is an imaginary quadratic field, Fl
is a two-dimensional Ql-vector space, and so is Vl(E). Thus, Vl(E) is a free
Fl-module of dimension one. Moreover, since this Fl-module structure on Vl
commutes with the action of G as given by ρl, we see that ρl must be given
by 1× 1 invertible matrices, i.e. it can be written as a homomorphism:

ρl : G→ GL1(Fl) = F ∗l , (18)

for a fixed basis of Vl(E) over Fl. Since GL1(Fl) is Abelian, the image ρl(G)
must also be Abelian, and hence ρl is an Abelian l-adic representation of K.

Let TF = ResF/Q(Gm) be the two-dimensional torus attached to F , so
that TF (Ql) = F ∗l and ρl takes values in TF (Ql). Then, in [§2.8, chap.
II, [9]], Serre proves the following theorem, proving in particular that ρl is
locally algebraic:

Theorem 24. Let K be a number field and E be an elliptic curve with
complex multiplication over K. The system {ρl}l of l-adic representations
attached to the elliptic curve E, is a strictly compatible system of Abelian
rational l-adic representations of K with values in TF . Moreover, there exists
a modulus m and an algebraic morphism φ : Sm → TF , such that ρl is the
composition of φ with the system of l-adic representations {εl}l attached to
Sm.

This theorem, as shown by Serre, is true not just for elliptic curves with
complex multiplication, but also for any Abelian variety with complex mul-
tiplication.

Elliptic Curves without Complex Multiplication

We saw in the previous section that for elliptic curves with complex mul-
tiplication, the representation ρl is Abelian, and in particular, can not be
surjective. However, in the non-CM case, for almost all primes l, the im-
age of ρl is surjective i.e., ρl(G) = Aut(Tl(E)) = GL2(Zl). Serre proves the
following theorem in [Chap. IV, [9]]:
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Theorem 25. Let K be a number field and E an elliptic curve over K with
no complex multiplication. Then the image ρl(G) is an open subgroup in
Aut(Tl(E)) and for almost all primes l, it is the whole set Aut(Tl(E)).

Following Faltings’ proof of the Tate conjectures, a modern proof of the
above theorem can be found in [8].
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