## The Mahler measure of some polynomial families

Siva Sankar Nair<br>(including joint work with Matilde Lalín and Subham Roy)

Université de Montréal
CMS Winter Meeting 2023

A celebration in honor of Jean-Marie De Koninck's $75^{\text {th }}$ birthday
December $2^{\text {nd }}, 2023$
Montréal

## The definition

For a non-zero rational function $P \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)^{\times}$, we define the (logarithmic) Mahler measure of $P$ to be

$$
\mathfrak{m}(P):=\int_{[0,1]^{n}} \log \left|P\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{n}}\right)\right| d \theta_{1} \cdots d \theta_{n}
$$

- Average value of $\log |P|$ over the unit $n$-torus.
- Introduced as a height function


## The one-variable case

If $P(x)=A \prod_{j=1}^{d}\left(x-\alpha_{j}\right)$, then Jensen's formula implies

$$
\mathfrak{m}(P)=\int_{0}^{1} \log \left|P\left(e^{2 \pi i \theta}\right)\right| d \theta=\log |A|+\sum_{\substack{j \\\left|\alpha_{j}\right|>1}} \log \left|\alpha_{j}\right| .
$$



- Thus, if $P(x) \in \mathbb{Z}[x] \Longrightarrow \mathfrak{m}(P) \geq 0$


## Some Properties

- Kronecker's Lemma: $P \in \mathbb{Z}[x], P \neq 0$,

$$
\mathfrak{m}(P)=0 \text { if and only if } P(x)=x^{n} \prod \Phi_{i}(x)
$$

where $\Phi_{i}(x)$ are cyclotomic polynomials.

- Lehmer's Question (1933, still open):

Do we have a constant $\delta>0$ such that for any $P \in \mathbb{Z}[x]$ with non-zero Mahler measure, we must also have $\mathfrak{m}(P)>\delta$ ?

$$
\mathfrak{m}\left(x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1\right) \approx 0.162357612 \ldots
$$

- Related to heights. For an algebraic integer $\alpha$ with logarithmic Weil height $h(\alpha)$,

$$
\mathfrak{m}\left(f_{\alpha}\right)=[\mathbb{Q}(\alpha): \mathbb{Q}] h(\alpha)
$$



## More variables, more problems (more fun?)

Calculating the Mahler measure of multi-variable polynomials is very difficult.
For certain polynomials, the Mahler measure comes up as a value of an L-function!
Smyth, 1981:

$$
\begin{gathered}
\mathfrak{m}(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)=L^{\prime}\left(\chi_{-3},-1\right) \\
\mathfrak{m}(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)=-14 \zeta^{\prime}(-2)
\end{gathered}
$$

## More examples

Condon, 2004:

$$
\mathfrak{m}(x+1+(x-1)(y+z))=\frac{28}{5 \pi^{2}} \zeta(3)=-\frac{112}{5} \zeta^{\prime}(-2)
$$

Lalín, 2006:

$$
\mathfrak{m}\left(1+x+\left(\frac{1-v}{1+v}\right)\left(\frac{1-w}{1+w}\right)(1+y) z\right)=\frac{93}{\pi^{4}} \zeta(5)=124 \zeta^{\prime}(-4)
$$

Rogers and Zudilin, 2010:

$$
\mathfrak{m}\left(x+\frac{1}{x}+y+\frac{1}{y}+8\right)=\frac{24}{\pi^{2}} L\left(E_{24 a 3}, 2\right)=4 L^{\prime}\left(E_{24 a 3}, 0\right)
$$



Matilde Lalín


Chris Smyth


Wadim Zudilin

## Coming up with such Identities

- In general, Mahler measures are arbitrary real values.
- Polynomials with a certain structure may give interesting values.
- Use the computer to compare with known L-values.
- Commonly associated to evaluating certain polylogarithms.


## Families of polynomials with arbitrarily many variables

Let

$$
P_{k}=y+\left(\frac{1-x_{1}}{1+x_{1}}\right) \cdots\left(\frac{1-x_{k}}{1+x_{k}}\right) .
$$

## Theorem (Lalín, 2006)

$$
\mathfrak{m}\left(P_{2 n}\right)=\sum_{h=1}^{n} \frac{a_{n, h}}{\pi^{2 h}} \zeta(2 h+1)
$$

and

$$
\mathfrak{m}\left(P_{2 n+1}\right)=\sum_{h=0}^{n} \frac{b_{n, h}}{\pi^{2 h+1}} L\left(\chi_{-4}, 2 h+2\right)
$$

$a_{j, k}, b_{j, k} \in \mathbb{Q}$ related to coefficients of elementary symmetric polynomials.

## Proof

$$
\begin{aligned}
& P_{k}=y+\left(\frac{1-x_{1}}{1+x_{1}}\right) \cdots\left(\frac{1-x_{k}}{1+x_{k}}\right) . \\
& \xi \text { compare with } \\
& Q_{\gamma}(y)=y+\gamma \\
& \mathfrak{m}\left(P_{k}\right)=\frac{1}{(2 \pi)^{k}} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} \mathfrak{m}\left(Q_{\left(\frac{1-e^{i \theta_{1}}}{1+e^{i \theta_{1}}}\right) \cdots\left(\frac{1-e^{i \theta_{k}}}{1+e^{i \theta_{k}}}\right)}(y)\right) \mathrm{d} \theta_{1} \cdots \mathrm{~d} \theta_{k} \\
& \text { 舀 "clever" transformations } \\
& =\frac{2^{k}}{\pi^{k}} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \mathfrak{m}\left(Q_{y_{k}}\right) \frac{y_{1} \mathrm{~d} y_{1}}{\left(y_{1}^{2}+1\right)} \cdot \frac{y_{2} d y_{2}}{\left(y_{2}^{2}+y_{1}^{2}\right)} \cdots \frac{d y_{k}}{\left(y_{k}^{2}+y_{k-1}^{2}\right)} .
\end{aligned}
$$

We have

$$
\int_{0}^{\infty} \cdots \int_{0}^{\infty} \mathfrak{m}\left(Q_{y_{k}}\right) \frac{y_{1} \mathrm{~d} y_{1}}{\left(y_{1}^{2}+1\right)} \cdot \frac{y_{2} \mathrm{~d} y_{2}}{\left(y_{2}^{2}+y_{1}^{2}\right)} \cdots \frac{\mathrm{d} y_{k}}{\left(y_{k}^{2}+y_{k-1}^{2}\right)}
$$

which can be written as a linear combination of integrals of the form

$$
\int_{0}^{\infty} \mathfrak{m}\left(Q_{t}\right) \log ^{j} t \frac{\mathrm{~d} t}{t^{2} \pm 1}
$$

and using

$$
\begin{gathered}
\int_{0}^{1} \log ^{k} t \frac{1}{t-a} \mathrm{~d} t=(-1)^{k+1}(k!) \operatorname{Li}_{k+1}(1 / a) \\
\rightarrow \text { gives zeta values and } L \text {-values }
\end{gathered}
$$

## Extending these results

Lalín also looked at

$$
\begin{gathered}
S_{n, r}=(1+x) z+\left[\left(\frac{1-x_{1}}{1+x_{1}}\right) \cdots\left(\frac{1-x_{n}}{1+x_{n}}\right)\right]^{r}(1+y) \\
\vdots \text { compare with } \\
Q_{\gamma}(x, y, z)=(1+x) z+\gamma(1+y)
\end{gathered}
$$

## Theorem (Lalín, N., Roy, 2023++)

For $n \geq 1$,

$$
\mathfrak{m}\left(S_{2 n, r}\right)=\sum_{h=1}^{n} \frac{a_{n, h}^{\prime}}{\pi^{2 h}} \mathcal{C}_{r}(h)
$$

and for $n \geq 0$,

$$
\mathfrak{m}\left(S_{2 n+1, r}\right)=\sum_{h=0}^{n} \frac{b_{n, h}^{\prime}}{\pi^{2 h+1}} \mathcal{D}_{r}(h)
$$

$$
\begin{aligned}
\mathcal{C}_{r}(h):= & r(2 h)!\left(1-\frac{1}{2^{2 h+1}}\right) \zeta(2 h+1) \\
& +\frac{r^{2}(2 h-1)!}{\pi^{2}} \times \\
& \left\{\frac{(-1)^{h+1} 7 B_{2 h} \pi^{2 h}}{2 r^{2}(2 h)!} \zeta(3)\left(2^{2 h-1}+(-1)^{r} 2^{2 h-1}+(-1)^{r+1}\right)\right. \\
& +(2 h+2)(2 h+1) \frac{1-2^{-2 h-3}}{r^{2 h+2}}\left(1-(-1)^{r}\right) \zeta(2 h+3) \\
& -\sum_{\ell=0}^{2 r-1}(-1)^{\ell}\left[\sum _ { t = 2 } ^ { 2 h + 2 } \left(\frac{(t-1)(t-2)}{2}(-1)^{t}\left(\operatorname{Li}_{t}\left(\xi_{2 r}^{\ell}\right)-\operatorname{Li}_{t}\left(-\xi_{2 r}^{\ell}\right)\right)\right.\right. \\
& \left.\left.\left.-\binom{t-1}{2 h-1}\left(2-2^{1-t}\right) \zeta(t)\right) \times \frac{(2 \pi i)^{2 h+3-t}}{(2 h+3-t)!} B_{2 h+3-t}\left(\frac{\ell}{2 r}\right)\right]\right\} .
\end{aligned}
$$

## Examples

$$
\begin{aligned}
\mathfrak{m}\left(1+x+\left[\left(\frac{1-x_{1}}{1+x_{1}}\right)\right]^{2}(1+y) z\right) & =\frac{21}{2 \pi^{2}} \zeta(3) \\
\mathfrak{m}\left(1+x+\left[\left(\frac{1-x_{1}}{1+x_{1}}\right)\left(\frac{1-x_{2}}{1+x_{2}}\right)\right]^{2}(1+y) z\right) & =\frac{96}{\pi^{3}} L\left(\chi_{-4}, 4\right)-\frac{21}{2 \pi^{2}} \zeta(3) \\
\mathfrak{m}\left(1+x+\left[\left(\frac{1-x_{1}}{1+x_{1}}\right) \ldots\left(\frac{1-x_{3}}{1+x_{3}}\right)\right]^{2}(1+y) z\right) & =\frac{31}{2 \pi^{4}} \zeta(5)-\frac{96}{\pi^{3}} L\left(\chi_{-4}, 4\right)+\frac{21}{2 \pi^{2}} \zeta(3)
\end{aligned}
$$

When $n=1$ :

$$
\begin{align*}
\mathfrak{m}\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right) & =\frac{24}{\pi^{3}} L\left(\chi_{-4}, 4\right) \\
\mathfrak{m}\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)^{2}(1+y) z\right) & =\frac{21}{2 \pi^{2}} \zeta(3) \\
\mathfrak{m}\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)^{3}(1+y) z\right) & =-\frac{8}{\pi^{3}} L\left(\chi_{-4}, 4\right)+\frac{12 \sqrt{3}}{\pi^{2}} L\left(\chi_{12}(11, \cdot), 3\right) \\
\mathfrak{m}\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)^{4}(1+y) z\right) & =-\frac{105}{2 \pi^{2}} \zeta(3)+\frac{64 \sqrt{2}}{\pi^{2}} L\left(\chi_{8}(5, \cdot), 3\right)
\end{align*}
$$




Making some clever transformations!

## Why does this work - Möbius transformations?

The transformation

$$
\phi(z)=\frac{1-z}{1+z}
$$

sends the unit circle to the imaginary axis. For $z=e^{i \theta}$,

$$
\frac{1-z}{1+z}=-2 i \tan \left(\frac{\theta}{2}\right)
$$

Some natural questions:

- Transformations that send unit circle to other lines?
- Those that preserve the unit circle?
- These are

$$
\phi(z)=e^{i \alpha} \frac{z-a}{1-\bar{a} z}
$$

where $a \in \Delta$. Blaschke products?

## Other results

Let

$$
Q_{k}\left(z_{1}, \ldots, z_{k}, y\right)=y+\left(\frac{z_{1}+\alpha}{z_{1}+1}\right) \cdots\left(\frac{z_{k}+\alpha}{z_{k}+1}\right)
$$

where $\alpha=e^{2 \pi i / 3}=\frac{-1+\sqrt{-3}}{2}$.

## Theorem (N., 2023++)

$$
\mathfrak{m}\left(Q_{2 n}\right)=\sum_{h=1}^{n} \frac{a_{n, h}}{\pi^{2 h}} \zeta(2 h+1)+\sum_{h=0}^{n-1} \frac{b_{n, h}}{\pi^{2 h+1}} L\left(\chi_{-3}, 2 h+2\right),
$$

and

$$
\mathfrak{m}\left(Q_{2 n+1}\right)=\sum_{h=1}^{n} \frac{c_{n, h}}{\pi^{2 h}} \zeta(2 h+1)+\sum_{h=0}^{n} \frac{d_{n, h}}{\pi^{2 h+1}} L\left(\chi_{-3}, 2 h+2\right)
$$

where the coefficients $a_{l, k}, b_{l, k}, c_{l, k}, d_{l, k} \in \mathbb{R}$ are defined recursively.

## Examples

We have the first few examples in this family:

$$
\begin{aligned}
\mathfrak{m}\left(P_{1}\right) & =\frac{5 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right) \\
\mathfrak{m}\left(P_{2}\right) & =\frac{91}{18 \pi^{2}} \zeta(3)+\frac{5}{4 \sqrt{3} \pi} L\left(\chi_{-3}, 2\right) \\
\mathfrak{m}\left(P_{3}\right) & =\frac{91}{36 \pi^{2}} \zeta(3)+\frac{5}{4 \sqrt{3} \pi} L\left(\chi_{-3}, 2\right)+\frac{153 \sqrt{3}}{16 \pi^{3}} L\left(\chi_{-3}, 4\right) \\
\mathfrak{m}\left(P_{4}\right) & =\frac{91}{36 \pi^{2}} \zeta(3)+\frac{3751}{108 \pi^{4}} \zeta(5)+\frac{35}{36 \sqrt{3} \pi} L\left(\chi_{-3}, 2\right)+\frac{51 \sqrt{3}}{8 \pi^{3}} L\left(\chi_{-3}, 4\right)
\end{aligned}
$$

## Proof

$$
\begin{array}{r}
\int \cdots \int \mathfrak{m}\left(P_{y_{n}}\right) \frac{y_{1} \mathrm{~d} y_{1}}{\left(y_{1}^{2}+y_{1}+1\right)} \cdot \frac{y_{2} \mathrm{~d} y_{2}}{\left(y_{2}^{2}+y_{2} y_{1}+y_{1}^{2}\right)} \cdots \frac{\mathrm{d} y_{n}}{\left(y_{n}^{2}+y_{n} y_{n-1}+y_{n-1}^{2}\right)} \\
=\sum_{h=1}^{\lfloor n / 2\rfloor} a_{h} \int_{0}^{1} \log ^{2 h} t \frac{1+t}{1-t^{3}} \mathrm{~d} t+\sum_{h=0}^{\lfloor n / 2\rfloor} b_{h} \int_{0}^{1} \frac{\log ^{2 h+1} t}{t^{2}+t+1} \mathrm{~d} t
\end{array}
$$

Again, we use

$$
\int_{0}^{1} \log ^{k} t \frac{1}{t-a} \mathrm{~d} t=(-1)^{k+1}(k!) \operatorname{Li}_{k+1}(1 / a)
$$

Relate combinations of polylogs to $L$-values

$$
\begin{aligned}
\operatorname{Li}_{2 n}(\omega)-\operatorname{Li}_{2 n}\left(\omega^{2}\right) & =\sqrt{3} i L\left(\chi_{-3}, 2 n\right) \\
\operatorname{Li}_{2 n+1}(\omega)+\operatorname{Li}_{2 n+1}\left(\omega^{2}\right) & =-\left(1-\frac{1}{3^{2 n}}\right) \zeta(2 n+1)
\end{aligned}
$$

## Further questions

Regarding the families of polynomials:

- Can we do this for other roots of unity? A general method?
- Do the coefficients have an elegant closed formula?
- Simplifying the polylog expressions



## HAPPY BIRTHDAY!

