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Abstract

Uplift modeling aims at predicting the causal effect of an action such as a medical treatment or a
marketing campaign on a particular individual, by taking into consideration the response to a treatment.
The treatment group contains individuals who are subject to an action; a control group serves for
comparison. Uplift modeling is used to order the individuals with respect to the value of a causal effect,
e.g., positive, neutral, or negative. Though there are some computational methods available for uplift
modeling, most of them exclude statistical regression models. The R Package tools4uplift intends to fill
this gap. This package comprises tools for: i) quantization, ii) visualization, iii) feature selection, and
iv) model validation.

1 Introduction
The term causal study refers to a study that tries to discover a cause-effect relationship. If there is a
causal relationship between two events, the events are highly dependent. However, the converse might
not be true, since association is not necessarily causation. If a clinical trial study is performed to isolate
the causal effect, association and causation coincide. However, most frequently, the available data comes
from observational studies, where causation and association\correlation differ. Most statistical models are
concerned with correlation because they are used on observational data. In such cases, some adjustments are
required to draw causal statements from the statistical models. It appears that this is not always obvious
to some practitioners.

The statistical framework for causal inference was formally introduced by Rubin (1974). This framework
is also associated with the potential outcome framework of Neyman (1923), also known as the Rubin causal
model (Holland, 1986). A potential outcome is the theoretical response each unit would have manifested,
had it been assigned to a particular treatment. Under randomization, these outcomes are independent of the
assignment other patients receive. In practice, potential outcomes for an individual cannot be observed. A
single unit is only assigned to either treatment or control, making direct observations in the other condition
(called the counterfactual condition) and the observed individual causal effects, impossible. This is well-
known as the fundamental problem of causal inference (Holland, 1986). Often, in a randomized experiment,
researchers focus on the estimation of average treatment effects and the effect of the treatment is determined
from this estimate. However, there might be a proportion of the population that may respond favorably
to the treatment, and another proportion that may not, depending on whether or not individual treatment
effects vary widely in the population. A decision based on an average treatment effect for a new arriving
individual would require a baseline adjustment because of the heterogeneity in treatment response originated
by many biologic, genetic and environmental characteristics.

In marketing, response models (Hanssens et al., 2003) of client behavior are based on historical data.
They are used to predict the probability that a client responds to a marketing campaign, e.g., the client
buys a product. Marketing campaigns using response models concentrate on clients associated with a high
probability of a positive response. However, this strategy does not ensure a purchase. On the other hand,
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customers may buy the product without any marketing effort. Therefore, it is important to extract the cause
of the purchase and to isolate the effect of marketing. Uplift models (Radcliffe and Surry, 1999; Hansotia
and Rukstales, 2001; Lo, 2002) provide a solution to the problem of isolating the marketing effect. Instead
of modeling the different response or class probabilities, uplift attempts to model the difference between
conditional response probabilities in the treatment and control groups. Uplift modeling aims at identifying
groups of individuals on which a predetermined action will have the most positive effect.

In the R Package tools4uplift presented here, we make available to practitioners a combination of tools for
uplift modeling, including some novel techniques introduced in this paper. Our package comprises tools for:
i) quantization, ii) visualization, iii) feature selection, and iv) model validation, alongside their associated
functions. We hope that the package will enable practitioners to save time and effort when analyzing their
uplift data.

The methods implemented in the R Package tools4uplift are related to, but distinct from the ones
implemented in the R Package uplift (Guelman, 2014). The functions included in uplift are designed for
building and testing the uplift models proposed by Guelman et al. (2015). It focuses on the adaptation of
non-parametric machine learning classifiers such as random forests and k-nearest neighbours. The R Package
tools4uplift offers a complementary set of functions targeting regression models such as logistic regression.
It focuses on building regression models adapted for uplift; it proposes two distinct methods for quantization
and visualization of continuous variables; and it introduces a method to perform automatic variable selection
in uplift regression models. Finally, the R Package tools4uplift also includes model validation functions.

The remaining of the paper is organized as follows. Section 2 introduces the notation, and discusses
the general uplift modeling methodology, alongside its statistical background and its implementation in R.
Section 3 shows an application of the proposed methodology to real data using tools4uplift. Some final
remarks and conclusions are given in Section 4.

2 Uplift models
In marketing, we are interested in the conditional probability that a client buys a product given that he
was targeted by a marketing campaign (the treatment group). We also want to measure the conditional
probability that a client buys the product given that he was not targeted (the control group). Uplift
attempts to model the difference between conditional class probabilities in the treatment and control groups.
The variable of interest has two possible outcomes: whether or not the purchase is made.

The logistic regression model is a widely used statistical model that uses a logistic function to model a
binary dependent variable. It is easy to implement and has an elegant interpretation, thanks, in particular,
to the odds ratio. The odds ratio is the ratio that compares the change in odds of buying a product for two
different sets of values of the factors in the model, e.g., change in age, gender, etc. The logistic regression
model is in part more popular than other binary-outcome models because odds ratios are readily available.

A customer base is a historical list of clients to whom a business sold products and services. This list
can be segmented along two dimensions in function of the response value (yes or no), and the associated
treatment (yes or no), given rise to the following groups (Kane et al., 2014):

1. the “persuadables” who respond to the marketing action because they are targeted,

2. the “sure” individuals who respond whether or not they are targeted,

3. the “lost” individuals who do not respond, regardless of whether or not they are targeted, and

4. the “do not disturb” individuals who are less likely to respond, just because they are targeted.

In general, the interesting customers from a marketing point of view are the “persuadables” and the
“do not disturb”. The persuadables provide incremental responses whereas the “do not disturb” individuals
should not be disturbed because the marketing campaign has a negative effect on them. Uplift modeling
attempts to separate customers into the four groups described above. The intuitive approach is to build two
classification models. Recall that the uplift is the difference between two conditional probabilities. Hansotia
and Rukstales (2001) proposed an indirect method to estimate the uplift based on a two-model approach.
This consists of fitting two separated conditional probability models: one for the treated individuals, and
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another for the untreated individuals. The uplift is estimated as the difference between these two conditional
probability models. The asset of this technique is its simplicity. However, both models focus on predicting
only a one-class probability instead of making an effort to predict the uplift. Any conventional statistical
or algorithmic binary-outcome classification method may serve to fit these models. In order to improve
the accuracy of the two-model approach, Lo (2002) proposed an interaction model. Interactions may arise
when considering the relationship among three or more variables, and describes a situation in which the
simultaneous influence of two variables on a third is not additive. The methodology is based on adding explicit
interaction terms between each covariate and the treatment indicator using a standard logistic regression.
The parameters of the interaction terms measure the additional effect of each covariate because of the
treatment. As in the two-model approach, an indirect estimation of the uplift is achieved by subtracting the
predicted probabilities associated with the control group from the probabilities associated with the treatment
group.

Other approaches to uplift modeling try to directly model the difference in conditional success proba-
bilities between the treatment and control groups. Most current active research is in this direction. Such
methods are mainly adaptation of three types of machine learning algorithms: a) decision tree learners
(Rzepakowski and Jaroszewicz (2010), Radcliffe and Surry (2011), Guelman et al. (2015), So ltys et al.
(2015) or Zhao et al. (2017)), b) regression models adapted to the uplift (Radcliffe (2007) or Jaskowski and
Jaroszewicz (2012)) and c) support vector machines for uplift (Zaniewicz and Jaroszewicz (2013), Kuusisto
et al. (2014) or Zaniewicz and Jaroszewicz (2017)).

To formalize the problem, let y ∈ {0, 1} be a binary response variable, x = (x1, . . . , xp) a vector of
explanatory variables (predictors), and τ ∈ {0, 1} the treatment indicator variable. The binary variable τ
indicates if unit i is exposed to treatment (τ = 1) or control (τ = 0). Suppose that n independent units are
observed

(yi,xi, τi), i = 1, . . . , n.

Denote the potential outcomes under control and treatment by {yi | τi = 0} and {yi | τi = 1} respectively.
The uplift model estimates

u(xi) = Pr(yi = 1 | xi, τi = 1)− Pr(yi = 1 | xi, τi = 0), i = 1, . . . , n. (1)

2.1 The two-model estimator
The two-model estimator (Hansotia and Rukstales, 2001) consists in the subtraction of logistic regression
models for the treated and untreated populations.

Definition 1. Let

Pr(yi = 1 | xi, τi = 1, β(1)
0 ,β(1)) = 1

1 + exp{−(β(1)
0 + x>

i β(1))}
and

Pr(yi = 1 | xi, τi = 0, β(0)
0 ,β(0)) = 1

1 + exp{−(β(0)
0 + x>

i β(0))}
,

where (β(k)
0 ,β(k)) for k = {0, 1} are the logistic regression parameters for control (k = 0) and treatment

(k = 1) groups, and the superscript > denote transposition. The two-model estimator predicts the uplift
associated with a covariate vector xn+1 for a future individual as

û(xn+1) = 1

1 + exp{−(β̂(1)
0 + x>

n+1β̂
(1)

)}
− 1

1 + exp{−(β̂(0)
0 + x>

n+1β̂
(0)

)}
,

where (β̂(k)
0 , β̂

(k)
) for k = {0, 1} are the maximum likelihood estimates for each group. The R Package

tools4uplift provides a straightforward implementation of this model with the functions DualUplift() and
DualPredict(). The arguments are
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DualUplift(data, treat, outcome, predictors)
DualPredict(data, treat, outcome, model, nb.group = 10, plotit = FALSE)

where data, treat and outcome are necessary arguments in order to fit and predict the two-model
estimator with respect to predictors. The data frame data must contain the treatment, outcome and
predictors variables. The names of these variables are used as the arguments of the DualUplift() function.
Then, in order to predict the uplift for a new observation, the output of the DualUplift() function needs
to be passed as the model argument of the DualPredict() function. Its remaining arguments (nb.group,
plotit) are used for validation purposes and are explained in Section 2.3.

2.2 The interaction model estimator
The interaction model (Lo, 2002) uses a standard logistic regression with first order interactions terms as
follows:

Definition 2. Let

log
(

Pr(yi = 1 | xi, τi, β0,β, γ, δ)
1− Pr(yi = 1 | xi, τi, β0,β, γ, δ)

)
= β0 + x>

i β + γτi + τix>
i δ

or equivalently

Pr(yi = 1 | xi, τi, β0,β, γ, δ) = 1
1 + exp{−(β0 + x>

i β + γτi + τix>
i δ)}

,

where (β0,β, γ, δ) are the logistic regression parameters. The predicted uplift associated with the covari-
ate vector xn+1 of a future individual is estimated by

û(xn+1) = 1
1 + exp{−(β̂0 + x>

n+1β̂ + γ̂ + x>
n+1δ̂)}

− 1
1 + exp{−(β̂0 + x>

n+1β̂)}
,

where (β̂0, β̂, γ̂, δ̂) are the maximum likelihood estimates. The implementation of the interaction model
estimator in R follows the same logic as the one of the two-model in Section 2.1. The functions InterUplift()
and InterPredict() have the following arguments

InterUplift(data, treat, outcome, predictors, input = c("all", "best"))
InterPredict(data, treat, outcome, model, nb.group = 10, plotit = FALSE)

where the arguments (data, treat, outcome, predictors, model, nb.group, plotit) have the same
role as in the DualUplift() and DualPredict() functions. The argument input = c("all", "best")
is important because it specifies which model to use. If this argument is set to "all", the function
InterUplift() uses the list of predictors given in the argument predictors to create the interaction terms
between the treat variable and the predictors, so as to fit the interaction model. The option input =
"best" stands for “best features”. In this case, InterUplift() uses the list of the selected main variables
and interaction terms provided by the method BestFeatures() described later in Section 2.3 which per-
forms variable selection. The output of BestFeatures() is exactly the list of the selected main variables
and interaction terms for the interaction model.

2.3 Model validation and selection
Model validation is accomplished by choosing an appropriate loss function to define the lack of fit between
the predicted and the actual values of the response variable at the individual observational units. Assessing
model performance is more complex for uplift modeling, as the actual value of the response, that is, the true
treatment effect, is unknown at the individual subject level. However, one can assess model performance by
comparing groups of observations exposed to different treatments.

Most often used in economics, the Gini coefficient (Gini, 1997) aims at measuring the model’s goodness-
of-fit and is one of the measures used in direct marketing for traditional response models. One way of
computing the Gini coefficient is to first draw a Lorenz curve (Lorenz, 1905). The plot depicting the Lorenz
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Figure 1: Example of Qini curves corresponding to two different uplift models compared to a random
targeting strategy.

curve illustrates the goodness-of-fit of a response model. The predicted scores of the targeted observations are
sorted in decreasing order. The horizontal axis represents the observed cumulative percentages associated to
the sorted predicted scores with respect to the whole targeted sample. The vertical axis, the Lorenz curve,
depicts the ratio of the cumulative response lift associated with each cumulative percentage to the total
number of responses. The Gini coefficient is a single index of model performance based on the Lorenz curve.
Radcliffe (2007) proposes a straightforward extension of the Lorenz curve and the Gini coefficient for uplift
modeling: the Qini curve and the Qini coefficient. Basically, the Qini curve is a Lorenz curve where the
predictive scores are replaced by the predicted uplifts. The intuition is that a good model should be able to
select individuals with positive uplift first. More explicitly, for a given model, let û(1) ≥ û(2) ≥ ... ≥ û(n) be
the sorted predicted uplifts. Let φ ∈ [0, 1] be a given proportion and let Nφ = {i : ûi ≥ û(φn)} ⊂ {1, . . . , n}
be the subset of individuals with the φn × 100% highest predicted uplifts ûi. As a function of the fraction
of population targeted φ, the incremental uplift or Qini curve is defined as

h(φ) =
∑
i∈Nφ

yiτi −
∑
i∈Nφ

yi(1− τi)

∑
i∈Nφ

τi∑
i∈Nφ

(1− τi)
,

with h(0) = 0, by definition. For any φ ∈ [0, 1], the relative incremental uplift g(φ) is given by g(φ) =
h(φ)/

n∑
i=1

τi. Note that g(1) = uoverall where uoverall is the overall observed uplift

uoverall =

n∑
i=1

yiτi

n∑
i=1

τi

−

n∑
i=1

yi(1− τi)
n∑
i=1

(1− τi)
.

The Qini curve is constructed by plotting g(φ) as a function of φ ∈ [0, 1]. This is illustrated in Figure 1.
The figure can be interpreted as follows: the x-axis represents the fraction of targeted individuals and the y-
axis shows the incremental number of positive responses relative to the total number of targeted individuals.
The straight line between the points (0, 0) and (1, uoverall) in Figure 1 represents a benchmark to compare
the performance of the model to a strategy that would randomly target subjects. The Qini coefficient q
is a single index of model performance. It is defined as the area under the Qini curve. This area can be
approximated using a Riemann sum such as the trapezoid formula: the domain of φ ∈ [0, 1] is partitioned
into J panels, or J + 1 grid points 0 = φ1 < φ2 < ... < φJ+1 = 1, to define the Qini coefficient q as
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Figure 2: Example of a Qini barplot with 5 panels corresponding to an uplift model. A good model should
order the observed uplift from highest to lowest.

q =
∫ 1

0
h(φ)dφ ≈ 1

2

J∑
j=1

(φj+1 − φj){h(φj+1) + h(φj)}.

In general, when comparing several models, the preferred model is the one with maximum Qini coefficient.
A combination of four functions (QiniTable(), QiniArea(), QiniCurve() and QiniBarPlot()) is available
in the R Package tools4uplift for model evaluation based on the Qini. The first function is QiniTable()

QiniTable(data, treat, outcome, prediction, nb.group = 10)

where data, treat, outcome are the necessary arguments in order to fit an uplift model and prediction
is the predicted uplift value for the data. The uplift values could be the output of the DualPredict(),
InterPredict(), or any other statistical method that gives an uplift prediction. The nb.group argument
represents the J panels used in order to construct the Qini curve and compute the Qini coefficient. The
number of panels is usually J ≥ 2 and, depending on the available data points, could be as large as the user
would like. In practice, practitioners present the results with 10 groups (deciles). The following functions
use x, the output of the QiniTable() as an input in order to compute the Qini coefficient and to plot the
Qini curve.

QiniArea(x)
QiniCurve(x, title = "Model Performance: Qini Curve", color = NULL)

Using the results from the QiniTable() function, one can also draw a barplot representing the observed
uplift between two grid points j and j+ 1 for j = 0, ..., J , as a function of the predicted uplift by the model,
as shown in Figure 2. This is done with the following function.

QiniBarPlot(x, title = "Model Performance: Uplift by Group", color = NULL)

Model selection refers to selecting the right (or best) model according to a certain criteria. It is usually
accomplished by selecting a subset of the variables available in a given dataset. Model selection is useful
because it reduces the dimension of the model, avoids over-fitting, and improves model stability and accuracy.
When the input space dimension is small, knowledge-based approaches to identify a good set of variables
can easily be performed and is sometimes preferable. In other situations, we may have a large number of
potentially important variables and it soon becomes a time consuming effort to follow a manual variable
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selection process. In this case, we may consider using automatic subset selection tools. Popular linear
variable selection techniques are forward, backward, stepwise (Montgomery et al., 2012), and stage-wise
selection (Hastie et al., 2007), as well as more recent techniques such as lasso (Tibshirani, 1996), and lar
(Efron et al., 2004), among others. However, these techniques have not been designed for uplift models, so
they need to be adapted. In this work, we have chosen to adapt lasso because of its popularity and success
in selecting variables when dealing with complex and high-dimensional models. We suggest a two-stage
approach. Our adapted lasso algorithm chooses the regularization hyper-parameter, that is, the penalty
parameter, in adequacy with uplift models performance measures, i.e., by maximizing the Qini coefficient q.

Consider the interaction model of Section 2.2. Let λ > 0 be the penalty constant. For any given λ, let
(β̂0(λ), β̂(λ), γ̂(λ), δ̂(λ)) be the value of the parameters that maximizes the penalized likelihood

n∑
i=1

{
yilog

(
pi

1− pi

)
+ log(1− pi)

}
+ λ‖(β, γ, δ)‖1,

where
pi = Pr(yi = 1 | xi, τi, β0,β, γ, δ) = 1

1 + exp{−(β0 + x>
i β + γτi + τix>

i δ)}
.

Let q(λ) be the Qini coefficient associated with the model with parameters (β̂0(λ), β̂(λ), γ̂(λ), δ̂(λ)). Our
lasso procedure solves

(β̂0(λ̂), β̂(λ̂), γ̂(λ̂), δ̂(λ̂)) = argmax
λ

q(λ). (2)

Using the glmnet() function from the glmnet R Package in order to generate the regularization path, we
defined a new function LassoPath() that is callable directly from the R Package tools4uplift. This function
is used inside the function BestFeatures() which returns the variables and interaction terms that maximize
the Qini coefficient. The arguments of the function are

BestFeatures(data, treat, outcome, predictors, nb.lambda = 100,
nb.group = 10, validation = FALSE, p = 0.3, value = FALSE)

where data, treat, outcome and predictors are defined as above. The argument nb.lambda is the
number of different λ values that are used for model fitting.

If validation is set to TRUE, the function performs a two-fold cross-validation. By default, the validation
set is set to a randomly chosen 30% of the data, p = 0.3. If value is set to TRUE, the function prints the
λ that maximizes the Qini coefficient q as well as its value. Finally, the function returns a vector of names
of the selected features. The output of the function can be used directly in the InterUplift() function in
order to fit the second stage of the modeling process. The second stage of the modeling process estimates
the coefficients of the selected variables by maximizing the non penalized likelihood.

2.4 Data manipulation
Data manipulation is an important aspect of statistical analysis. Feature engineering, exploration of missing
values patterns, outliers detection and descriptive statistics are useful to get insight about the collected data
to formalize the research question and must be performed before fitting any model. Quantization transforms
a continuous variable into a categorical variable. Quantization of continuous variables into bins is extremely
useful when trying to model non-linearity in the data. Alternatives consist of finding a good transformation
such as splines. Quantization is also useful for storing data instances in fewer bits. A variable with 2k
categories can be embedded in only k bits. Existing algorithms for optimal partitioning of a continuous
variable are suitable to response modeling but not to uplift modeling (Garcia et al., 2013). In practice, when
exploring uplift data, the partition is performed with two options: equal length intervals and equal frequency
intervals. For example, the bins are based on the deciles of the variable in the niv() function from uplift R
Package. Here, we suggest a univariate supervised quantization tree-based algorithm for optimal partitioning
similar to CART (Breiman et al., 1984) with a modified splitting criterion based on hypothesis testing for
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uplift. The same idea is extended to bivariate quantization in order to look for for potential interactions.
Interactions may arise when considering the relationship among three or more variables, and describes a
situation in which the simultaneous influence of two variables on a third is not additive. We build a non-
parametric supervised quantization algorithm guided by the observed uplift, where the two-dimensional
feature space is divided in rectangles. In addition, the R Package tools4uplift provides visualization tools for
both quantization methods: uplift barplots for the univariate case, and heatmaps for the bivariate case.

Univariate supervised quantization. Suppose that we have n observations, and that we want to quan-
tize a given continuous explanatory variable X. The objective is to partition the sample Ω (or root node)
into two child nodes Ωleft and Ωright based on X so that

u(X | Ωleft) 6= u(X | Ωright), (3)

at a pre-specified statistically significant level α. Therefore, we need to find the splitting point X = x
associated with the minimum p value of the uplift test satisfying p value ≤ α. The procedure is then repeated
recursively into each child node until the stopping rule is satisfied.

Sample Ω

Ωleft: Treatment vs. Control Ωright: Treatment vs. Control

Figure 3: For one explanatory variable, the sample Ω is divided into four groups: left child node treatment
group, left child node control group, right child node treatment group, and right child node control group.
The goal is to find the most statistically significant split at a given significance level α (that is, a split
satisfying p value ≤ α) along a given variable X.

To simplify the notation, let g = 1, 2, 3, 4 denote one of the following four groups: 1 = left node treatment
group, 2 = left node control group, 3 = right node treatment group, and 4 = right node control group. Let

pg be the proportion of responses in group g, ng be the number of observations in group g, and n =
4∑
g=1

ng.

The uplift statistical test in (3) can be written in terms of these proportions as follows:{
H0 : p1 − p2 = p3 − p4

H1 : p1 − p2 6= p3 − p4
,

or equivalently {
H0 : p1 − p3 = p2 − p4

H1 : p1 − p3 6= p2 − p4
.

Let p̂g be an estimator of pg, g = 1, 2, 3, 4, that only depends on the data in the corresponding control
or treatment group, that is, that does not use the samples from the other group. Under the assumption of
randomization between treatment and control groups, p̂1− p̂3 (treatment only) and p̂2− p̂4 (control only) are
independent. However, within each group, for instance, the treatment group, p̂1 and p̂3 are not independent.
In order to build a statistical test, we need the expectation and variance of these estimators. Let us first
represent the treatment group split in Table 1. Denote

pT = Pr(y = 1 | τ = 1) : probability of success in the treatment group,
nT = card{i : Xi < x} : number of observations in the left node treatment group,
NT : number of observations in the treatment group,
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and let Z be the random variable that counts the number of successes in the left node treatment group.
It is easily seen that Z ∼ Hypergeometric(nT , pTNT , NT ) where nT is the number of draws, pTNT is the
number of successes in the population, and NT is the population size. The random variable Z has the
following properties

E[Z] = nT pT , (4)

V[Z] = nT {pT (1− pT )}
(
NT − nT
NT − 1

)
, (5)

where E[.] stands for the mathematical expectation and V[.] stands for variance.

Left Node Right Node Total
Success z pTNT − z pTNT
Fail nT − z (1− pT )NT − nT + z (1− pT )NT
Total nT NT − nT NT

Table 1: Contingency table for treatment group observations split into left and right nodes.

We consider the following unbiased estimators based on the above table:

p̂1 = z

nT
,

p̂3 = pTNT − z
NT − nT

.

Using the Hypergeometric distribution properties (4) and (5), it is easy to show that

E[p̂1 − p̂3] = NTE[Z]
nT (NT − nT ) −

nT pTNT
nT (NT − nT ) = 0,

V[p̂1 − p̂3] = N2
TV[Z]

{nT (NT − nT )}2 = N2
T pT (1− pT )

nT (NT − nT )(NT − 1) .

The same development applies to the control group. The statistics associated with the uplift test{
H0 : (p1 − p3)− (p2 − p4) = 0
H1 : (p1 − p3)− (p2 − p4) 6= 0

is based on the asymptotic pivotal quantity

zobs = (p̂1 − p̂2)− (p̂3 − p̂4)√
V{(p̂1 − p̂2)− (p̂3 − p̂4)}

(6)

where, because of the assumption of independence between treatment and control groups samples,

V{(p̂1 − p̂2)− (p̂3 − p̂4)} = N2
T pT (1− pT )

nT (NT − nT )(NT − 1) + N2
CpC(1− pC)

nC(NC − nC)(NC − 1) .

By the Central Limit Theorem, the statistics given by the right-hand-side of equation (6) is asymptotically
normally distributed under the null hypothesis; therefore the test rejects H0 at a level α when

| zobs |> zα
2

where zα denotes the upper-tail α-percentile of the standard normal distribution.

Algorithm 1. The algorithm we propose works as described in the following pseudo-code. Let X be a
continuous explanatory variable and m > 1 be the number of possible split points:
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1. Compute the range of the variable: r = X(max) −X(min)

2. Compute the distance between the split points r
m .

3. Generate a vector of all splits points xj = X(min) + j rm , for j = 1, ...,m.

4. Go through each value Xi and examine each candidate split point xj :

(a) If Xi < xj , the case goes to the left child node;
(b) Otherwise, the case goes to the right child node.
(c) The best split point is the one that minimizes the p value of the uplift test.

5. Repeat step 4 for each child node until the stopping rule is satisfied.

6. Output the terminal nodes or leaves and final split points.

Remark 1. If X is a categorical (ordinal or nominal) explanatory variable with a large number K of dif-
ferent categories, we set the number of split points to test m = K−1. We transform the categorical variable
into an ordinal variable by sorting in an increasing manner its categories according to their corresponding
uplift values. Using the ranking of these categories, we create a continuous variable which we feed into the
above quantization algorithm. This idea is useful in practice as a complexity reduction mechanism when K
is very large.

The function that performs the optimal partitioning is called BinUplift(). Its arguments are

BinUplift(data, treat, outcome, x, n.split = 10,
alpha = 0.05, n.min = 30,
ylim = NULL, ylab = "Uplift",
title = "Binning Results", color = NULL)

where data, treat, outcome are the arguments for the data, treatment indicator and outcome variable
of interest. The x argument is the name of the explanatory variable to quantize by trying n.split equidistant
values in the range of the variable. The arguments alpha and n.min control the performance of the statistical
test. alpha is the significance level of the test; n.min is the minimum number of observations in each group
(treatment or control) required to consider a split. The remaining arguments specify plotting options. The
function returns a barplot for variables that are successfully quantized. If it is not possible to quantize the
variable at a level alpha, the function returns a message indicating that no split was possible at the given
significance level.

Several variables can be quantized separately with one call to the function BinUpliftEnhanced(), which
takes the same arguments as BinUplift(), except for var.list, which is a list containing the names of the
variables to quantize. The function tries to quantize all these variables at a specified significance level alpha,
and, if successful, it returns an augmented dataset with the quantized variables and a trace specifying which
were quantized, and which were not.

Bivariate supervised quantization. Next, suppose that we want to quantize simultaneously two con-
tinuous explanatory variables X1 and X2 so as to construct a single categorical interaction variable X1,2.
The idea is to partition the plane into disjoint rectangles S based on their associated observed uplifts

uS =

∑
i∈S

yiτi∑
i∈S

τi
−

∑
i∈S

yi(1− τi)∑
i∈S

(1− τi)
.

Algorithm 2. The algorithm we propose works as described in the following pseudo-code. Let X1 and
X2 be two continuous explanatory variables, b > 1 be the number of intervals each variable will be cut into
and c ≥ 2 be the number of categories of the categorical variable X1,2.
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1. Find the minimum and the maximum values of X1 and X2.

2. Divide the feature space {X1,min, X1,max} × {X2,min, X2,max} into b2 rectangles.

3. Compute the observed uplift in each rectangle.

4. Predict the individual uplift of each observation by the observed uplift of its rectangle uS .

5. Create a new categorical variable X1,2 with c categories sorted from the highest to the lowest predicted
uplift.

Remark 2. The parameters b and c can be set to the optimizers of a cross-validation criterion based on
the Qini coefficient.

The function that creates the heatmap and the associated bivariate qunatization is called SquareUplift().
Its arguments are

SquareUplift(data, var1, var2, treat, outcome, n.split = 10,
n.min = 1, categorize = TRUE, nb.group = 3,
plotit = TRUE, nb.col = 20)

where data is a data frame containing the variables of interest var1, var2. The arguments n.split and
nb.group correspond to the parameters b and c of Algorithm 2. For visualization purposes, the argument
plotit is set by default to TRUE. The function returns a heatmap of observed uplifts per rectangle con-
taining a minimum of n.min observations per treatment and control groups. SquareUplift() also returns
an augmented dataset with two new variables: a continuous variable Uplift var1 var2, representing the
observed uplift within each of the n.split × n.split rectangles, and a categorical variable Cat var1 var2
with nb.group categories.

3 Application
In this section, we analyze a publicly available dataset from a marketing campaign (Hillstrom, 2008) using
the R Package tools4uplift. The data contain records of 64, 000 customers who last purchased a product
within twelve months. The individuals were randomly assigned to three groups; two groups were targeted by
two different e-mail campaigns and one group served as control. The treatment assignment was performed
in a randomized experiment fashion: a third of the individuals were randomly chosen to receive an e-mail
campaign featuring men merchandise, another third were randomly chosen to receive an e-mail campaign
featuring women merchandise, and the last third, the control group, did not receive any form of initiative.
The results were tracked during a period of two weeks following the e-mail campaign. Some questions
can be answered with an uplift model: What is the incremental response of customers targeted by any
of two campaigns? Is there a way to optimally select the subset of customers that should be targeted?
Conversely, Is there a subset of customers that should be removed from future campaigns? The historical
customer attributes available include recency which indicates the number of months since the last purchase;
history which is the amount in dollars spent in the past year; two binary variables indicating if the customer
purchased men merchandise or women merchandise in the past year; the zip code of the customer categorized
as urban, suburban or rural; an indicator variable newbie indicating if the customer is a new customer in the
past twelve months; and the channel from which the customer purchased in the past year, i.e., by phone,
web or both. The treatment allocation variable included in the dataset is segment. In this application, we
only focus on the target variable visit which is a binary variable indicating whether or not the customer
visited the website. Moreover, to simplify the analysis, we restrict the treatment data to the treatment group
treat = 1 that received e-mail on women merchandise, and to the control group treat = 0 that received
no e-mail. The overall observed uplift for this marketing campaign is uoverall = 4.5%.

Baseline models
First, we use the function SplitUplift() in order to split the dataset into training and test datasets
with respect to the overall uplift. It is important to partition the data into subsets that keep the same
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distribution of treated versus nontreated and responders versus nonresponders. This is achieved by specifying
the stratification variables in the argument group = c("treat", "visit").

R>set.seed(1988)
R>split.data1 <- SplitUplift(data = data1, p = 0.7, group = c("treat", "visit"))
R>train <- split.data1[[1]]
R>valid <- split.data1[[2]]

Using the two-model estimator of Section 2.1, and the interaction model estimator of Section 2.2, we fit
two baseline models for comparison purposes. First, we fit the two-model estimator using the following code

R># baseline model on train set: fitting the two-model estimator
R>base.tm <- DualUplift(train, "treat", "visit",
+ predictors = colnames(train[, 1:9]))

The function returns a list of two elements. The first element is the baseline model fitted for nontreated
individuals and the second is the baseline model fitted for treated individuals. Each model is a glm object
which fits a logistic regression to each group.

R># baseline model for control group
R>base.tm[[1]]

Call: glm(formula = model_formula, family = binomial(link = "logit"),
data = mydata0)

Coefficients:
(Intercept) recency
-2.1557961 -0.0675804

history mens
0.0007079 0.5428172

womens zip_code_Rural
0.4789285 0.4931095

zip_code_Surburban newbie
0.0631602 -0.6875501

channel_Multichannel channel_Phone
-0.2495831 -0.3802874

Degrees of Freedom: 14963 Total (i.e. Null); 14954 Residual
Null Deviance: 10100
Residual Deviance: 9696 AIC: 9716

R># baseline model for treatment group
R>base.tm[[2]]

Call: glm(formula = model_formula, family = binomial(link = "logit"),
data = mydata1)

Coefficients:
(Intercept) recency
-2.0427178 -0.0425278

history mens
0.0004829 0.3444088

womens zip_code_Rural
0.8500028 0.2901685

zip_code_Surburban newbie
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0.0425791 -0.4949860
channel_Multichannel channel_Phone

-0.0977911 -0.2400491

Degrees of Freedom: 14920 Total (i.e. Null); 14911 Residual
Null Deviance: 12540
Residual Deviance: 12140 AIC: 12160

Using the validation set, the function DualPredict() predicts the uplift.

R># predict the uplift on the validation set
R>base.tm.valid <- DualPredict(valid, "treat", "visit", model = base.tm,
+ nb.group = 5)[[1]]

Finally, to evaluate the quality of the baseline model, we compute the Qini coefficient with QiniArea().
Here, we use nb.group = 5 to evaluate all the models.

R># evaluate the model performance
R>base.tm.perf <- QiniTable(base.tm.valid, "treat", "visit", "uplift_prediction",
+ nb.group = 5)
R>QiniCurve(base.tm.perf, title = "")
R>QiniBarPlot(base.tm.perf, title = "")
R>QiniArea(base.tm.perf)
[1] 0.7236409

Next, we fit the interaction model estimator, and compare it to the two-model estimator. Both models
perform similarly on the validation set. Figure 4 shows the performance of the interaction model using the
functions QiniCurve() and QiniBarPlot().

R># baseline model on train set: fitting the interaction estimator
R>base.inter <- InterUplift(train, "treat", "visit",
+ predictors = colnames(train[, 1:9]), input = "all")
R>base.inter
Call: glm(formula = model_formula, family = binomial(link = "logit"),

data = data)

Coefficients:
(Intercept) treat
-2.1557961 0.1130783

recency history
-0.0675804 0.0007079

mens womens
0.5428172 0.4789285

zip_code_Rural zip_code_Surburban
0.4931095 0.0631602

newbie channel_Multichannel
-0.6875501 -0.2495831

channel_Phone treat:recency
-0.3802874 0.0250526

treat:history treat:mens
-0.0002250 -0.1984084

treat:womens treat:zip_code_Rural
0.3710743 -0.2029410

treat:zip_code_Surburban treat:newbie
-0.0205812 0.1925641
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Figure 4: Performance of the interaction baseline model of Section 2.2 on a validation set. On the left panel,
we see that the Qini coefficient is positive and outperforms random targeting (q = 0.72). On the right panel,
we observe that the model does not sort ideally the individuals to target. A good model should order the
observed uplift from highest to lowest (see Figure 2). The resulting object QiniTable is visualized using the
QiniCurve() command (left panel) and the QiniBarPlot() command (right panel).

treat:channel_Multichannel treat:channel_Phone
0.1517920 0.1402384

Degrees of Freedom: 29884 Total (i.e. Null); 29865 Residual
Null Deviance: 22760
Residual Deviance: 21840 AIC: 21880

Once the coefficients of the logistic regression are estimated, we predict the uplift for the individuals in
the validation set, and evaluate the quality of the model with the Qini functions.

R># predict the uplift on the validation set
R>base.inter.valid <- InterPredict(valid, "treat", "visit", model = base.inter,
+ nb.group = 5)[[1]]
R>
R># evaluate the model performance
R>base.inter.perf <- QiniTable(base.inter.valid, "treat", "visit",
+ "uplift_prediction", nb.group = 5)
R>QiniCurve(base.inter.perf, title = "")
R>QiniBarPlot(base.inter.perf, title = "")
R>QiniArea(base.inter.perf)
[1] 0.7236409

Univariate quantization
The dataset contains two continuous variables, recency and history. We quantize both variables using the
function BinUplift(). Figure 5 displays the barplots associated with the two quantizations.

R>bin.recency <- BinUplift(data = data1, treat = "treat", outcome = "visit",
+ x = "recency", n.split = 12, alpha = 0.05,
+ n.min = 30, ylim = c(0, 0.1), title="")

R>bin.recency
$‘out.tree‘
[1] "oups..no significant split"
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Figure 5: Univariate quantization with respect to the observed uplift. We can see that for recency (left
panel), the optimal solution gives two groups with significantly (α = 0.10) different positive uplift values. For
history (right panel), the optimal solution (α = 0.05) gives three groups. Note that the uplift distribution
is non linear with respect to the historical expenses. The barplots were output by the function BinUplift().

For a significance level of α = 0.05, the decision tree does not find any significant partition of the data
with respect to the recency variable. Hence, one can either keep the variable as continuous in the models
or increase the level of significance α. For α = 0.10, there is indeed a significant split. The following code
implements the quantization of recency and history.

R># change the level of signification from 5% to 10%
R>bin.recency <- BinUplift(data = data1, treat = "treat", outcome = "visit",
+ x = "recency", n.split = 12, alpha = 0.10,
+ n.min = 30, ylim = c(0, 0.1), title="")
[1] "The variable recency has been cut at:"
[1] 11.08333

R>bin.history <- BinUplift(data = data1, treat = "treat", outcome = "visit",
+ x = "history", n.split = 100, alpha = 0.05,
+ n.min = 30, ylim = c(-0.1, 0.1), title="")
[1] "The variable history has been cut at:"
[1] 527.381
[1] "The variable history has been cut at:"
[1] 1641.715

Bivariate quantization
Searching for a possible interaction between recency and history with respect to the uplift, we use the
function SquareUplift() in order to visualize the interaction in a heatmap and create a new categorical
variable based on Algorithm 2 of Section 2.4.

The following code returns an augmented dataset with two new variables: Uplift recency history, a
continuous variable representing the observed uplift within each of the n.split × n.split rectangles, and
a categorical variable Cat recency history with nb.group categories.

R>data1 <- SquareUplift(data1, "recency", "history", "treat", "visit",
+ n.split = 3, nb.group = 2)
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The function also returns the associated heatmap displayed in Figure 6.
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Figure 6: Bivariate quantization with respect to the observed uplift. By default, the SquareUplift()
command returns the associated heatmap. The left panel shows the heatmap based on b2 = 9 rectangles.
Note that for customers that spent less than $ 1,000 in the past year, the number of months since last
purchase does not affect the observed uplift. On the other hand, the observed uplift is dependent on the
recency of the last purchase for customers that spent more than $ 1,000. The heatmap colors are based
on the rainbow palette with the red color representing the lowest uplift and the blue color representing the
highest uplift.

Model selection and comparison
The objective of this section is to improve the fitting of the interaction baseline model by performing variable
selection. This is done using the BestFeatures() method. We compare several models that differ in the
number and type of explanatory variables. For example, we compare the fittings with the quantized version of
continuous variables against models fitted with the original variables. More specifically, we fit the interaction
model estimator of Section 2.3 with different versions of the variables recency and history. We let the
function BestFeatures() select the best set of predictors. The baseline model uses the original variables.

Other models are fitted using either the quantized recency and the original history, or the origi-
nal recency and the quantized history, or both quantized variables. Another model is fitted using the
Cat recency history categorical variable from the bivariate quantization algorithm. The following code
implements the interaction model based on the best selected features (that is, those giving highest Qini
coefficient). In this model both recency and history are the original continuous variables. The idea is to
try to improve the baseline model with feature selection based on the Qini coefficient.

R># baseline with feature selection
R># feature selection using the lasso path
R>features <- BestFeatures(data = train, treat = "treat", outcome = "visit",
+ predictors = colnames(train[, 1:9]), nb.group = 5)
R>features
[1] "treat" "recency"
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Figure 7: Performance of the best interaction model with automatic feature selection on a validation set.
The Qini coefficient is q = 0.99.

[3] "history" "mens"
[5] "womens" "zip_code_Rural"
[7] "zip_code_Surburban" "newbie"
[9] "channel_Multichannel" "channel_Phone"

[11] "treat:recency" "treat:mens"
[13] "treat:womens" "treat:zip_code_Rural"
[15] "treat:zip_code_Surburban" "treat:newbie"
[17] "treat:channel_Multichannel" "treat:channel_Phone"

The function drops the interaction between history and treat. Next, we use the features vector in
the InterUplift() function in order to fit an interaction model.

R># fitting the interaction estimator with selected features only
R>baseline.lasso <- InterUplift(train, "treat", "visit",
+ predictors = features, input = "best")
R># predict the uplift on the validation set
R>baseline.lasso.valid <- InterPredict(valid, "treat", "visit",
+ model = baseline.lasso, nb.group = 5)[[1]]

R># evaluate the model performance
R>baseline.lasso.perf <- QiniTable(baseline.lasso.valid, "treat", "visit",
+ "uplift_prediction", nb.group = 5)
R>QiniCurve(baseline.lasso.perf, title = "")
R>QiniBarPlot(baseline.lasso.perf, title = "")
R>QiniArea(baseline.lasso.perf)
[1] 0.9532956

We can see that the baseline model shows an increase in the Qini coefficient from 0.72 to 0.95 when using
the automatic feature selection method.

Next, we repeat this procedure by changing the versions (continuous or categorical) of the recency and
history variables. The R Package tools4uplift makes it easy and fast to implement different models with
feature selection, with both continuous and categorical variables. Table 2 displays the Qini coefficients as-
sociated with each of these models. The interaction model that works with the univariate quantizations of
the variables recency and history yields the highest Qini coefficient, as well as a good ordering in terms of
uplift of the population to target, i.e., from the highest to the lowest observed uplift. This is seen in Figure 7.
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Function Description
BestFeatures() Feature selection for the interaction estimator
BinUplift() Univariate quantization
BinUpliftEnhanced() Univariate quantization - augmented data
DualPredict() Predictions from a two-model estimator
DualUplift() Two-model estimator
InterPredict() Predictions from an interaction estimator
InterUplift() Interaction estimator
LassoPath() LASSO path for penalized logistic regression
QiniArea() Qini coefficient
QiniBarPlot() Uplift barplot
QiniCurve() Qini curve
QiniTable() Performance of an uplift estimator
SplitUplift() Split data with respect to uplift distribution
SquareUplift() Bivariate quantization

Table 3: Summary of the functions available in the R Package tools4uplift

Model Feature Selection Qini coefficient
Baseline No 0.72
No quantization Yes 0.95
Categorical history only Yes 0.93
Categorical recency only Yes 0.94
Univariate categorical recency and history Yes 0.99
Bivariate categorical recency and history Yes 0.97

Table 2: Comparison of model performances on a validation set. The non linearity introduced by the
quantization of variables recency and history helps the uplift model to better segment the customers of
the marketing campaign.

4 Summary
We present the methodology associated with the new R Package tools4uplift together with an application
to a real world marketing campaign dataset, as an illustration of how the package could be used to analyse
uplift data. The functions presented in this work are summarized in Table 3; their dependencies are shown
in Figure 8. The purpose of tools4uplift is to give practitioners the necessary tools to get some insight
about the uplift signal in the context of a randomized experiment. This work deals with four crucial steps
in statistical modeling: i) quantization, ii) visualization, iii) feature selection, and iv) model validation. All
the available functions in the package are thoroughly described and accompanied by a motivating example.
The use of tools4uplift will enable practitioners to save time and effort when analyzing their uplift data.

Computational details
The results in this paper were obtained using R 3.2.3 with the Packages tools4uplift and dummies. R itself
and all packages used are available from CRAN at http://CRAN.R-project.org/.

In order to analyze our algorithms in terms of runtime, two simple experiments were performed. The
experiments were run on a desktop PC with Intel Core i7-7700 CPU @ 3.60GHz with 16 GB of RAM and
Windows 10 operating system. For the univariate quantization algorithm of Section 2.4, Figure 9 shows the
system runtime as a function of the number of split points to test at each node. For the bivariate quantization
algorithm, the system runtime as a function of the number of rectangles is shown in Figure 10. In both
cases, we see that the algorithms are computationally efficient.
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Figure 8: Diagram of function dependencies. Ellipses denote functions developed in the tools4uplift that
are dependent on other functions. A −→ B means that B depends on A. Rectangles denote independent
functions and diamonds denote pre-existing R libraries.
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Figure 9: Runtimes (in seconds) of Algorithm 1 of the BinUplift() function (see Section 2.4) for univariate
quantization of a continuous variable, as a function of the number of splits to test at each node of the decision
tree. The different colored curves represent different sample sizes.
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Figure 10: Runtimes (in seconds) of Algorithm 2 of the SquareUplift() function (see Section 2.4) for
bivariate quantization of two continuous variables, as a function of the number of rectangles to use in order
to estimate the uplift. The different colored curves represent different sample sizes. The maximum observed
runtime in our experiment was 0.0993 seconds.
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